The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048287 Number of semiorders on n labeled nodes whose incomparability graph is connected. 11
 1, 1, 7, 61, 751, 11821, 226927, 5142061, 134341711, 3975839341, 131463171247, 4803293266861, 192178106208271, 8356430510670061, 392386967808249967, 19788154572706556461, 1066668756919315412431, 61204224384073232815981 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Robert Israel, Table of n, a(n) for n = 1..373 Mats Granvik, Power series to calculate Lambert W up to infinity FORMULA E.g.f.: 1-2*(1-exp(-x))/(1-sqrt(4*exp(-x)-3)). E.g.f.: (1 - sqrt(4*exp(-x) - 3)) / 2. - Michael Somos, Nov 26 2017 a(n) = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n, k)*k!*Catalan(k-1). - Vladeta Jovovic, Oct 18 2003 Equals column 1 (unsigned) of triangle A136595, which is the matrix inverse of the triangle A136590 of trinomial logarithmic coefficients. - Paul D. Hanna, Jan 10 2008 E.g.f A(x)=F(exp(x)-1), F(x)=x*A005043(x). - Vladimir Kruchinin, Sep 07 2010 a(n) = (-1)^(n-1) + Sum_{k=1..n-1} binomial(n,k)*a(k)*a(n-k). - Robert Israel, Mar 01 2016 Given e.g.f. =: A(x), then exp(-x) = A(x)^2 - A(x) + 1 = A'(x)*(1 - 2*A(x)). - Michael Somos, Nov 26 2017 a(n) ~ sqrt(3/8) * n^(n-1) / (log(4/3)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Dec 16 2020 EXAMPLE a(3)=7, the seven semiorders being three disjoint points and the disjoint union of a point and a two-element chain (with six labelings). MAPLE A048287 := n -> add((-1)^(n-k-1)*Stirling2(n, k+1)*(2*k)!/k!, k=0..n-1): seq(A048287(n), n=1..18); # Peter Luschny, Jan 27 2016 MATHEMATICA Table[Sum[(-1)^(n - k) StirlingS2[n, k] k!*CatalanNumber[k - 1], {k, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *) Rest[Range[0, 18]! CoefficientList[Series[1 - 2 (1 - Exp[-x]) /(1 - Sqrt[4 Exp[-x] - 3]), {x, 0, 18}], x]] (* Vincenzo Librandi, Jan 28 2016 *) PROG (PARI) {a(n)=local(A136590=matrix(n+1, n+1, r, c, if(r>=c, (r-1)!/(c-1)!*polcoeff(log(1+x+x^2 +x*O(x^n))^(c-1), r-1)))); (-1)^(n+1)*(A136590^-1)[n+1, 2]} \\ Paul D. Hanna, Jan 10 2008 (PARI) {a(n) = if( n<0, 0, n! * polcoeff( (1 - sqrt(4*exp(-x + x*O(x^n)) - 3)) / 2, n))}; /* Michael Somos, Nov 26 2017 */ (PARI) {a(n) = if( n<1, 0, n! * polcoeff( serreverse( -log(1 - x + x^2 + x * O(x^n))), n))}; /* Michael Somos, Nov 26 2017 */ CROSSREFS Cf. A000108, A006531. Cf. A136595, A136590. Sequence in context: A213326 A261901 A350157 * A317430 A145507 A254121 Adjacent sequences:  A048284 A048285 A048286 * A048288 A048289 A048290 KEYWORD easy,nonn AUTHOR EXTENSIONS More terms from Vladeta Jovovic, Oct 18 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 4 08:01 EDT 2022. Contains 355070 sequences. (Running on oeis4.)