login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136590
Triangle of trinomial logarithmic coefficients: A027907(n,k) = Sum_{i=0..k} T(k,i)*n^i/k!.
6
1, 0, 1, 0, 1, 1, 0, -4, 3, 1, 0, 6, -13, 6, 1, 0, 24, -10, -25, 10, 1, 0, -240, 394, -135, -35, 15, 1, 0, 720, -2016, 1834, -525, -35, 21, 1, 0, 5040, -5076, -3668, 5089, -1400, -14, 28, 1, 0, -80640, 170064, -110692, 14364, 9849, -3024, 42, 36, 1, 0, 362880, -1155024, 1339020, -672400, 118125, 12873, -5670, 150, 45, 1
OFFSET
0,8
COMMENTS
A027907 is the triangle of trinomial coefficients.
The Bell transform of A136591(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
FORMULA
E.g.f. of column k = log(1 + x + x^2)^k / k! for k>=0.
Central trinomial coefficients: A002426(n) = Sum_{k=0..n} T(n,k)*n^k/n!.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, -4, 3, 1;
0, 6, -13, 6, 1;
0, 24, -10, -25, 10, 1;
0, -240, 394, -135, -35, 15, 1;
0, 720, -2016, 1834, -525, -35, 21, 1;
0, 5040, -5076, -3668, 5089, -1400, -14, 28, 1;
0, -80640, 170064, -110692, 14364, 9849, -3024, 42, 36, 1;
0, 362880, -1155024, 1339020, -672400, 118125, 12873, -5670, 150, 45, 1; ...
Trinomial coefficients can be calculated as illustrated by:
A027907(4,3) = (T(3,0)*4^0 + T(3,1)*4^1 + T(3,2)*4^2 + T(3,3)*4^3)/3! =
(0 - 4*4 + 3*4^2 + 1*4^3)/3! = 96/6 = 16.
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> n!*(modp(n+1, 3)-modp(n, 3)), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 11;
M = BellMatrix[#!*(Mod[# + 1, 3] - Mod[#, 3])&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
PROG
(PARI) {T(n, k)=n!/k!*polcoeff(log(1+x+x^2 +x*O(x^n))^k, n)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: A136591(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
Cf. columns: A136591, A136592, A136593; A136594 (unsigned row sums); A136595 (matrix inverse); A027907, A002426.
Sequence in context: A242106 A294885 A021236 * A117026 A316656 A083904
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Jan 10 2008
STATUS
approved