login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136595
Matrix inverse of triangle A136590.
6
1, 0, 1, 0, -1, 1, 0, 7, -3, 1, 0, -61, 31, -6, 1, 0, 751, -375, 85, -10, 1, 0, -11821, 5911, -1350, 185, -15, 1, 0, 226927, -113463, 26341, -3710, 350, -21, 1, 0, -5142061, 2571031, -603246, 87381, -8610, 602, -28, 1, 0, 134341711, -67170855, 15887845, -2346330, 240051, -17766
OFFSET
0,8
COMMENTS
A136590 is the triangle of trinomial logarithmic coefficients.
Column 1 is signed A048287, which is the number of semiorders on n labeled nodes whose incomparability graph is connected.
The Bell transform of (-1)^n*A048287(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016
FORMULA
T(n,k) = Sum_{i=0..n-1} (-1)^i * (k+i)! * Stirling2(n,k+i) * Catalan(k,i)/k!, where Stirling2(n,k) = A008277(n,k); Catalan(k,i) = C(2i+k,i)*k/(2i+k) = coefficient of x^i in C(x)^k with C(x) = (1-sqrt(1-4x))/(2x).
EXAMPLE
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 7, -3, 1;
0, -61, 31, -6, 1;
0, 751, -375, 85, -10, 1;
0, -11821, 5911, -1350, 185, -15, 1;
0, 226927, -113463, 26341, -3710, 350, -21, 1;
0, -5142061, 2571031, -603246, 87381, -8610, 602, -28, 1;
0, 134341711, -67170855, 15887845, -2346330, 240051, -17766, 966, -36, 1; ...
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> (-1)^n*A048287(n+1), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 11;
M = BellMatrix[Sum[(-1)^(k+1) k! StirlingS2[#+1, k] CatalanNumber[k-1], {k, 1, #+1}]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
PROG
(PARI) {T(n, k) = if(n<k||k<0, 0, if(n==k, 1, if(k==0, 0, n!/(k-1)!* sum(i=0, n-1, (-1)^i * polcoeff(((exp(x + x*O(x^n)) - 1)^(k+i)), n) * binomial(2*i+k, i)/(2*i+k)))))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Define Stirling2: */
{Stirling2(n, k) = n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
/* Define Catalan(m, n) = [x^n] C(x)^m: */
{CATALAN(m, n) = binomial(2*n+m, n) * m/(2*n+m)}
/* Define this triangle: */
{T(n, k) = if(n<k||k<0, 0, if(n==k, 1, if(k==0, 0, sum(i=0, n-1, (-1)^i*(k+i)!*Stirling2(n, k+i) * CATALAN(k, i)/k!))))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: (-1)^n*A048287(n+1), 10) # Peter Luschny, Jan 18 2016
CROSSREFS
Cf. columns: A048287, A136596, A136597; A136590 (matrix inverse); A136588, A136589.
Sequence in context: A083803 A370325 A346933 * A111475 A222581 A010139
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Jan 10 2008
STATUS
approved