login
A136596
Column 2 of triangle A136595.
4
1, -3, 31, -375, 5911, -113463, 2571031, -67170855, 1987919671, -65731585623, 2401646633431, -96089053104135, 4178215255335031, -196193483904124983, 9894077286353278231, -533334378459657706215, 30602112192036616407991
OFFSET
2,2
FORMULA
a(n) = Sum_{i=0..n-1} (-1)^i*(2+i)!*Stirling2(n,2+i)*Catalan(2,i)/2!, where Stirling2(n,k) = A008277(n,k); Catalan(k,i) = binomial(2*i+k,i)*k/(2*i+k) = coefficient of x^i in C(x)^k with C(x) = (1-sqrt(1-4x))/(2x).
a(n) = (1+(-1)^n*A048287(n))/2. - Vladeta Jovovic, Jan 27 2008
PROG
(PARI) {a(n)=n!* sum(i=0, n-1, (-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(2+i)), n)*binomial(2*i+2, i)/(2*i+2))}
for(n=2, 20, print1(a(n), ", "))
(PARI) /* Define Stirling2: */
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
/* Define Catalan(m, n) = [x^n] C(x)^m: */
{Catalan(m, n)=binomial(2*n+m, n)*m/(2*n+m)}
/* Define this sequence: */
{a(n)=sum(i=0, n-1, (-1)^i*(2+i)!*Stirling2(n, 2+i)*Catalan(2, i)/2!)}
for(n=2, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 10 2008
STATUS
approved