login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A136596 Column 2 of triangle A136595. 4
1, -3, 31, -375, 5911, -113463, 2571031, -67170855, 1987919671, -65731585623, 2401646633431, -96089053104135, 4178215255335031, -196193483904124983, 9894077286353278231, -533334378459657706215, 30602112192036616407991 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

LINKS

Table of n, a(n) for n=2..18.

FORMULA

a(n) = Sum_{i=0..n-1} (-1)^i*(2+i)!*Stirling2(n,2+i)*Catalan(2,i)/2!, where Stirling2(n,k) = A008277(n,k); Catalan(k,i) = binomial(2*i+k,i)*k/(2*i+k) = coefficient of x^i in C(x)^k with C(x) = (1-sqrt(1-4x))/(2x).

a(n) = (1+(-1)^n*A048287(n))/2. - Vladeta Jovovic, Jan 27 2008

PROG

(PARI) {a(n)=n!* sum(i=0, n-1, (-1)^i*polcoeff(((exp(x+x*O(x^n))-1)^(2+i)), n)*binomial(2*i+2, i)/(2*i+2))}

for(n=2, 20, print1(a(n), ", "))

(PARI) /* Define Stirling2: */

{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}

/* Define Catalan(m, n) = [x^n] C(x)^m: */

{Catalan(m, n)=binomial(2*n+m, n)*m/(2*n+m)}

/* Define this sequence: */

{a(n)=sum(i=0, n-1, (-1)^i*(2+i)!*Stirling2(n, 2+i)*Catalan(2, i)/2!)}

for(n=2, 20, print1(a(n), ", "))

CROSSREFS

Cf. A136595; A048287, A136597.

Sequence in context: A136024 A051200 A274667 * A186207 A014178 A123818

Adjacent sequences:  A136593 A136594 A136595 * A136597 A136598 A136599

KEYWORD

sign

AUTHOR

Paul D. Hanna, Jan 10 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 19:25 EDT 2021. Contains 343901 sequences. (Running on oeis4.)