login
A051200
Except for initial term, primes of form "n 3's followed by 1".
16
3, 31, 331, 3331, 33331, 333331, 3333331, 33333331, 333333333333333331, 3333333333333333333333333333333333333331, 33333333333333333333333333333333333333333333333331
OFFSET
1,1
COMMENTS
"A remarkable pattern that is entirely accidental and leads nowhere" - M. Gardner, referring to the first 8 terms.
a(2)*a(3)*a(4) = 34179391, a Zeisel number (A051015) with coefficients (10,21).
a(2)*a(3)*a(4)*a(5) = 1139233281421, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(6) = 379741768929343351, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(7) = 1265805010367017001532181, a Zeisel number with coefficients (10,21).
a(2)*a(3)*..*a(8) = 42193497392022209194699696424911, a Zeisel number with coefficients (10,21).
Besides first 3, primes of the form (10^n-7)/3, n>1. See A123568. - Vincenzo Librandi, Aug 06 2010
The integer lengths of the terms of the sequence are 1, 2, 3, 4, 5, 6, 7, 8, 18, 40, 50, 60, 78, 101, 151, 319, 382, etc. - Harvey P. Dale, Dec 01 2018
REFERENCES
M. Gardner, The Last Recreations, Springer, 1997, p. 194.
W. Sierpiński, 200 Zadan z Elementarnej Teorii Liczb, Warsaw, 1964; Problem 88 [in English: 200 Problems from the Elementary Theory of Numbers]
W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, Warsaw, 1970, pp. 8, 56-57.
F. Smarandache, Properties of numbers, University of Craiova, 1973
LINKS
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, 3.
FORMULA
Union of 3 and A123568.
MATHEMATICA
Join[{3}, Select[Rest[FromDigits/@Table[PadLeft[{1}, n, 3], {n, 50}]], PrimeQ]] (* Harvey P. Dale, Apr 20 2011 *)
KEYWORD
nonn,nice
EXTENSIONS
More terms from James A. Sellers
Cross reference added by Harvey P. Dale, May 21 2014
STATUS
approved