The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051201 Sum of elements of the set { [ n/k ] : 1 <= k <= n }. 9
 1, 3, 4, 7, 8, 12, 13, 15, 19, 21, 22, 28, 29, 31, 33, 39, 40, 43, 44, 51, 53, 55, 56, 60, 66, 68, 70, 73, 74, 83, 84, 87, 89, 91, 93, 103, 104, 106, 108, 112, 113, 123, 124, 127, 130, 132, 133, 138, 146, 149, 151, 154, 155, 159, 161, 172, 174, 176, 177, 183, 184, 186 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 FORMULA a(n) = m*(m+1)/2 + Sum_{k=1..floor(n/(m+1))} floor(n/k), where m is the largest number such that m*(m+1) <= n, i.e., m=floor( (sqrt(4*n+1)-1)/2 ). - Max Alekseyev, Feb 12 2012 MATHEMATICA a[n_] := With[{m = Quotient[Floor@Sqrt[4n+1]-1, 2]}, m(m+1)/2 + Sum[ Quotient[n, k], {k, 1, Quotient[n, m+1]}]]; Array[a, 100] (* Jean-François Alcover, Nov 20 2020, after Max Alekseyev *) PROG (PARI) { a(n) = m=(sqrtint(4*n+1)-1)\2; m*(m+1)/2 + sum(k=1, n\(m+1), n\k) } \\ Max Alekseyev, Feb 12 2012 (Python) from math import isqrt def A051201(n): return ((m:=isqrt((n<<2)+1)+1>>1)*(m-1)>>1)+sum(n//k for k in range(1, n//m+1)) # Chai Wah Wu, Oct 31 2023 CROSSREFS Cf. A006218. Sequence in context: A078823 A045615 A211220 * A026449 A286904 A282166 Adjacent sequences: A051198 A051199 A051200 * A051202 A051203 A051204 KEYWORD nonn AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 13:10 EDT 2024. Contains 372940 sequences. (Running on oeis4.)