

A051201


Sum of elements of the set { [ n/k ] : 1 <= k <= n }.


8



1, 3, 4, 7, 8, 12, 13, 15, 19, 21, 22, 28, 29, 31, 33, 39, 40, 43, 44, 51, 53, 55, 56, 60, 66, 68, 70, 73, 74, 83, 84, 87, 89, 91, 93, 103, 104, 106, 108, 112, 113, 123, 124, 127, 130, 132, 133, 138, 146, 149, 151, 154, 155, 159, 161, 172, 174, 176, 177, 183, 184, 186
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..62.


FORMULA

a(n) = m*(m+1)/2 + Sum_{k=1..floor(n/(m+1))} floor(n/k), where m is the largest number such that m*(m+1) <= n, i.e., m=floor( (sqrt(4*n+1)1)/2 ).  Max Alekseyev, Feb 12 2012


MATHEMATICA

a[n_] := With[{m = Quotient[Floor@Sqrt[4n+1]1, 2]}, m(m+1)/2 + Sum[ Quotient[n, k], {k, 1, Quotient[n, m+1]}]];
Array[a, 100] (* JeanFrançois Alcover, Nov 20 2020, after Max Alekseyev *)


PROG

(PARI) { a(n) = m=(sqrtint(4*n+1)1)\2; m*(m+1)/2 + sum(k=1, n\(m+1), n\k) } \\ Max Alekseyev, Feb 12 2012


CROSSREFS

Cf. A006218.
Sequence in context: A078823 A045615 A211220 * A026449 A286904 A282166
Adjacent sequences: A051198 A051199 A051200 * A051202 A051203 A051204


KEYWORD

nonn


AUTHOR

David W. Wilson


STATUS

approved



