login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274667
Diagonal of the rational function 1/(1 - x - y - x y - x z - y z + x y z).
1
1, 3, 31, 339, 4131, 53013, 705139, 9618003, 133672387, 1884947073, 26889061761, 387207732453, 5619687743151, 82101265925409, 1206262382507451, 17809706204128659, 264074421220475427, 3930338612143125849, 58692717332813782501, 879093138034007102289, 13202346737893575996541
OFFSET
0,2
COMMENTS
Annihilating differential operator: x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*Dx^2 + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*Dx + 12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48.
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4).
0 = x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*y'' + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*y' + (12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48)*y, where y(x) is the g.f.
Recurrence: 2*n^2*(469*n^2 - 2106*n + 2229)*a(n) = (11725*n^4 - 64375*n^3 + 111011*n^2 - 68153*n + 13344)*a(n-1) + (46431*n^4 - 301356*n^3 + 678782*n^2 - 620403*n + 186048)*a(n-2) + (37989*n^4 - 284553*n^3 + 757682*n^2 - 829732*n + 299712)*a(n-3) - 2*(n-3)^2*(469*n^2 - 1168*n + 592)*a(n-4). - Vaclav Kotesovec, Jul 05 2016
MATHEMATICA
CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3]/(1-12*x-34*x^2-36*x^3+x^4)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - x*y - x*z - y*z + x*y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 22; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], 1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3, N)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 02 2016
STATUS
approved