OFFSET
0,2
COMMENTS
Annihilating differential operator: x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*Dx^2 + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*Dx + 12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..310
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4).
0 = x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*y'' + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*y' + (12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48)*y, where y(x) is the g.f.
Recurrence: 2*n^2*(469*n^2 - 2106*n + 2229)*a(n) = (11725*n^4 - 64375*n^3 + 111011*n^2 - 68153*n + 13344)*a(n-1) + (46431*n^4 - 301356*n^3 + 678782*n^2 - 620403*n + 186048)*a(n-2) + (37989*n^4 - 284553*n^3 + 757682*n^2 - 829732*n + 299712)*a(n-3) - 2*(n-3)^2*(469*n^2 - 1168*n + 592)*a(n-4). - Vaclav Kotesovec, Jul 05 2016
MATHEMATICA
CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3]/(1-12*x-34*x^2-36*x^3+x^4)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - x*y - x*z - y*z + x*y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 22; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], 1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3, N)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 02 2016
STATUS
approved