login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274668
Diagonal of the rational function 1/(1 - x - y - z - x y + x z - y z + x y z).
3
1, 7, 109, 2095, 44401, 995647, 23161909, 552919423, 13454515585, 332268466327, 8302478659069, 209447296631503, 5325782947464721, 136330694520639535, 3509805380065157989, 90806156097601965055, 2359490223343888886785, 61541525049445532797735, 1610570872210945422212365
OFFSET
0,2
COMMENTS
Annihilating differential operator: x*(5*x+4)*(x^3+19*x^2+27*x-1)*Dx^2 + (15*x^4+206*x^3+363*x^2+216*x-4)*Dx + 5*x^3+33*x^2+36*x+28.
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: hypergeom([1/12, 5/12],[1],13824*x^4*(1-27*x-19*x^2-x^3)/(1-28*x+54*x^2+20*x^3+x^4)^3)/(1-28*x+54*x^2+20*x^3+x^4)^(1/4).
0 = x*(5*x+4)*(x^3+19*x^2+27*x-1)*y'' + (15*x^4+206*x^3+363*x^2+216*x-4)*y' + (5*x^3+33*x^2+36*x+28)*y, where y is the g.f.
From Peter Bala, Jan 15 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+k)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A001850 and A126086.
n^2*(37*n - 49)*a(n) = (999*n^3 - 2322*n^2 + 1567*n - 328)*a(n-1) + (703*n^3 - 2337*n^2 + 2295*n - 536)*a(n-2) + (n - 2)^2*(37*n - 12)*a(n-3). (End)
MATHEMATICA
gf = Hypergeometric2F1[1/12, 5/12, 1, 13824*x^4*(1 - 27*x - 19*x^2 - x^3) / (1 - 28*x + 54*x^2 + 20*x^3 + x^4)^3]/(1 - 28*x + 54*x^2 + 20*x^3 + x^4)^(1/4);
CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 01 2017 *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - z - x*y + x*z - y*z + x*y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 21; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], 13824*x^4*(1-27*x-19*x^2-x^3)/(1-28*x+54*x^2+20*x^3+x^4)^3, N)/(1-28*x+54*x^2+20*x^3+x^4)^(1/4))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 05 2016
STATUS
approved