login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A126086 Number of paths from (0,0,0) to (n,n,n) such that at each step (i) at least one coordinate increases, (ii) no coordinate decreases, (iii) no coordinate increases by more than 1 and (iv) all coordinates are integers. 11
1, 13, 409, 16081, 699121, 32193253, 1538743249, 75494983297, 3776339263873, 191731486403293, 9850349744182729, 510958871182549297, 26716694098174738321, 1406361374518034383189, 74456543501901550262689, 3961518532003397434536961, 211689479080817606497324033 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Also, the number of alignments for 3 sequences of length n each (Slowinski 1998).
This is a 3-dimensional generalization of A001850.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500 (first 101 terms from Nick Hobson)
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
E. Duchi and R. A. Sulanke, The 2^{n-1} Factor for Multi-Dimensional Lattice Paths with Diagonal Steps, Séminaire Lotharingien de Combinatoire, B51c (2004).
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
Steffen Eger, The Combinatorics of Weighted Vector Compositions, arXiv:1704.04964 [math.CO], 2017.
Nick Hobson, Python program
L. Reid, Problem #8: How Many Paths from A to B?, Missouri State University's Challenge Problem Set from the 2005-2006 academic year.
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
FORMULA
a(n) can be computed as the coefficient of (xyz)^n in the expansion of 1 / (1-x-y-z-xy-xz-yz-xyz). Also, - 2*(n+1)^2 * a(n) + (n+1)*(5n+8) * a(n+1) - 3*(37*n^2 + 146*n + 139) * a(n+2) - (55*n^2 + 389*n + 685) * a(n+3) + (n+4)^2 * a(n+4) = 0. - Max Alekseyev, Mar 03 2007
For Brendan McKay's explicit formula see the Maple code.
From Dan Dima, Mar 03 2007: (Start)
I found a very simple (although infinite) sum for the number of paths from (0,0,...,0) to (a(1),a(2),...,a(k)) using "nonzero" (2^k-1) steps of the form (x(1),x(2),...,x(k)) where x(i) is in {0,1} for 1<=i<=k, k-dimensions.
f(a(1),a(2),...,a(k)) = Sum( (C(n;a(1)) * C(n;a(2)) * ... C(n;a(k))) / 2^{n+1}, {n, max(a(1),a(2),...,a(k)), infinity}), Sum( (C(n;a(1)) * C(n;a(2)) * ... C(n;a(k))) / 2^{n+1}, {n, 0, infinity}), C(n;a)=n!/a!(n-a)! & we assumed C(n;a)=0 if n<a.
Also f(a(1),a(2),...,a(k)) can be computed as the coefficient of x(1)^a(1)...x(k)^a(k) in the expansion: 1/2 * 1/(1 - (1+x(1))*...*(1+x(k))/2). (End)
From David W. Cantrell (DWCantrell(AT)sigmaxi.net), Mar 03 2007: (Start)
Using pseudo-Mathematica-style notation, f(a(1),a(2),...,a(k)) is 2^(-1 - a(1)) (a(1)!)^(k-1)/(a(2)! a(3)! ... a(k)!) * HypergeometricPFQRegularized[{1, 1 + a(1), 1 + a(1),..., 1 + a(1)}, {1, 1 + a(1) - a(2), 1 + a(1) - a(3),..., 1 + a(1) - a(k)}, 1/2]
Although it should be obvious from the above that there are k denominatorial parameters, it is not obvious that there are to be (k+1) numeratorial parameters [one of which is 1 and the other k of them are 1 + a(1)]. In other words, we have P = k + 1 and Q = k.
For information about HypergeometricPFQRegularized, see http://functions.wolfram.com/HypergeometricFunctions/HypergeometricPFQRegularized/ . (End)
G.f.: hypergeom([1/3,2/3],[1], 54*x/(1-x)^3)/(1-x). - Mark van Hoeij, Mar 25 2012.
Recurrence (of order 3): n^2*(3*n-4)*a(n) = (3*n-2)*(57*n^2 - 95*n + 25)*a(n-1) - (9*n^3 - 30*n^2 + 29*n - 6)*a(n-2) + (n-2)^2*(3*n-1)*a(n-3). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ c * d^n / n, where d = 12*2^(2/3)+15*2^(1/3)+19 = 56.947628372041491... and c = 0.2805916350775843477992461458421909485724690193829181355064... = sqrt((6 + 5*2^(1/3) + 4*2^(2/3))/6)/(2*Pi). - Vaclav Kotesovec, Mar 15 2014, updated Mar 22 2016
From Peter Bala, Jan 16 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A001850 and A274668.
a(n) = Sum_{0 <= j, k <= n} (-2)^(j+k)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). (End)
EXAMPLE
Illustrating a(1) = 13:
000 -> 001 -> 011 -> 111
000 -> 001 -> 101 -> 111
000 -> 001 -> 111
000 -> 010 -> 011 -> 111
000 -> 010 -> 110 -> 111
000 -> 010 -> 111
000 -> 100 -> 101 -> 111
000 -> 100 -> 110 -> 111
000 -> 100 -> 111
000 -> 011 -> 111
000 -> 101 -> 111
000 -> 110 -> 111
000 -> 111
MAPLE
f := proc(n) local i, k; add(add((-1)^k*binomial(k, i)*(-1)^i*binomial(i, n)^3, i=n..k), k=n..3*n) end: # Brendan McKay, Mar 03 2007
seq(sum(binomial(k, n)^3/2^(k+1), k=n..infinity), n=0..10); # Vladeta Jovovic, Mar 01 2008
MATHEMATICA
m = 14; se = Series[1/(1 - x - y - z - x*y - x*z - y*z - x*y*z), {x, 0, m}, {y, 0, m}, {z, 0, m}]; a[n_] := Coefficient[se, (x*y*z)^n]; a[0] = 1; Table[a[n], {n, 0, m}] (* Jean-François Alcover, Sep 27 2011, after Max Alekseyev *)
Table[Sum[Sum[(-1)^k*Binomial[k, i]*(-1)^i*Binomial[i, n]^3, {i, n, k}], {k, n, 3*n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 15 2014, after Brendan McKay *)
PROG
(Python) # Naive version - see link for better version.
def f(a, b):
if a == 0 or b == 0:
return 1
return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
def g(a, b, c):
if a == 0:
return f(b, c)
if b == 0:
return f(c, a)
if c == 0:
return f(a, b)
return (
g(a, b, c - 1)
+ g(a, b - 1, c)
+ g(a - 1, b, c)
+ g(a, b - 1, c - 1)
+ g(a - 1, b, c - 1)
+ g(a - 1, b - 1, c)
+ g(a - 1, b - 1, c - 1)
)
for n in range(6):
print(g(n, n, n), end=", ")
CROSSREFS
Column k=3 of A262809.
Sequence in context: A284824 A075672 A069876 * A055203 A088919 A201537
KEYWORD
nonn
AUTHOR
Nick Hobson, Mar 03 2007
EXTENSIONS
More terms from Max Alekseyev, Mar 03 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 21:02 EDT 2024. Contains 370951 sequences. (Running on oeis4.)