login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088919
Smallest number having exactly n representations as sum of two squares of distinct primes.
3
1, 13, 410, 2210, 10370, 202130, 229970, 197210, 81770, 18423410, 16046810, 12625730, 21899930, 9549410, 370247930, 416392730, 579994610, 338609570, 2155919090, 601741010, 254885930, 10083683090, 4690939370, 29207671610
OFFSET
0,2
COMMENTS
A088918(a(n)) = n and A088918(k) <> n for k<a(n).
No terms after a(13) are smaller than 99000000. - John W. Layman, Jan 20 2004
EXAMPLE
a(2) = 410 = 7^2+19^2 = 11^2+17^2;
a(3) = 2210 = 19^2+43^2 = 23^2+41^2 = 29^2+37^2;
a(4) = 10370 = 13^2+101^2 = 31^2+97^2 = 59^2+83^2 = 71^2+73^2;
a(5) = 202130 = 23^2+449^2 = 97^2+439^2 = 163^2+419^2 = 211^2+397^2 = 251^2+373^2;
a(6) = 229970 = 23^2+479^2 = 109^2+467^2 = 193^2+439^2 = 263^2+401^2 = 269^2+397^2 = 331^2+347^2;
a(7) = 197210 = 31^2+443^2 = 67^2+439^2 = 107^2+431^2 = 173^2+409^2 = 199^2+397^2 = 241^2+373^2 = 311^2+317^2;
a(8) = 81770 = 41^2+283^2 = 53^2+281^2 = 71^2+277^2 = 97^2+269^2 = 137^2+251^2 = 157^2+239^2 = 179^2+223^2 = 193^2+211^2.
MATHEMATICA
(* This program is not convenient for a large number of terms *) nMax = 14; piMax = 2500; tp = Table[{Prime[i]^2 + Prime[j]^2, i, j}, {i, 1, piMax}, {j, i+1, piMax}] // Flatten[#, 1]&; sp = tp[[All, 1]] // Tally // Sort[#, #1[[2]] > #2[[2]]& ]& // Split[#, #1[[2]] == #2[[2]]& ]&; ssp = (Sort /@ sp)[[All, 1]]; a[0] = 1; Do[a[ssp[[n, 2]]] = ssp[[n, 1]], {n, 1, Length[ssp]}]; Table[a[n], {n, 0, nMax}] (* Jean-François Alcover, Jun 19 2013 *)
CROSSREFS
Sequence in context: A069876 A126086 A055203 * A201537 A258178 A266486
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 23 2003
EXTENSIONS
More terms from John W. Layman, Jan 20 2004
a(14)-a(23) from Donovan Johnson, May 08 2010
STATUS
approved