Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jun 19 2013 06:19:06
%S 1,13,410,2210,10370,202130,229970,197210,81770,18423410,16046810,
%T 12625730,21899930,9549410,370247930,416392730,579994610,338609570,
%U 2155919090,601741010,254885930,10083683090,4690939370,29207671610
%N Smallest number having exactly n representations as sum of two squares of distinct primes.
%C A088918(a(n)) = n and A088918(k) <> n for k<a(n).
%C No terms after a(13) are smaller than 99000000. - _John W. Layman_, Jan 20 2004
%H Donovan Johnson, <a href="/A088919/b088919.txt">Table of n, a(n) for n = 0..33</a> (terms < 10^12)
%H <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a>
%e a(2) = 410 = 7^2+19^2 = 11^2+17^2;
%e a(3) = 2210 = 19^2+43^2 = 23^2+41^2 = 29^2+37^2;
%e a(4) = 10370 = 13^2+101^2 = 31^2+97^2 = 59^2+83^2 = 71^2+73^2;
%e a(5) = 202130 = 23^2+449^2 = 97^2+439^2 = 163^2+419^2 = 211^2+397^2 = 251^2+373^2;
%e a(6) = 229970 = 23^2+479^2 = 109^2+467^2 = 193^2+439^2 = 263^2+401^2 = 269^2+397^2 = 331^2+347^2;
%e a(7) = 197210 = 31^2+443^2 = 67^2+439^2 = 107^2+431^2 = 173^2+409^2 = 199^2+397^2 = 241^2+373^2 = 311^2+317^2;
%e a(8) = 81770 = 41^2+283^2 = 53^2+281^2 = 71^2+277^2 = 97^2+269^2 = 137^2+251^2 = 157^2+239^2 = 179^2+223^2 = 193^2+211^2.
%t (* This program is not convenient for a large number of terms *) nMax = 14; piMax = 2500; tp = Table[{Prime[i]^2 + Prime[j]^2, i, j}, {i, 1, piMax}, {j, i+1, piMax}] // Flatten[#, 1]&; sp = tp[[All, 1]] // Tally // Sort[#, #1[[2]] > #2[[2]]& ]& // Split[#, #1[[2]] == #2[[2]]& ]&; ssp = (Sort /@ sp)[[All, 1]]; a[0] = 1; Do[a[ssp[[n, 2]]] = ssp[[n, 1]], {n, 1, Length[ssp]}]; Table[a[n], {n, 0, nMax}] (* _Jean-François Alcover_, Jun 19 2013 *)
%K nonn
%O 0,2
%A _Reinhard Zumkeller_, Oct 23 2003
%E More terms from _John W. Layman_, Jan 20 2004
%E a(14)-a(23) from _Donovan Johnson_, May 08 2010