OFFSET
0,3
COMMENTS
Series reversion of x*(1+x)/(1+2*x+3*x^2) [offset 0]. - Paul Barry, Mar 13 2007
Hankel transform is 2^C(n+1,2). - Philippe Deléham, Mar 16 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
FORMULA
G.f.: (1-sqrt(1-8*x^2))/(x*(4*x-1+sqrt(1-8*x^2))). - Emeric Deutsch, Mar 04 2007
a(n) = Sum_{k=0..n} 2^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n) = Sum_(k=1..n} (1+(-1)^(n-k))*k*2^((n-k)/2-1)*C(n,(n+k)/2)/n, n>0. - Vladimir Kruchinin, Feb 18 2011
a(2*n) = A089022(n). - Philippe Deléham, Nov 02 2011
D-finite with recurrence: (n+1)*a(n) = 3*(n+1)*a(n-1) - 8*(2-n)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(3*(n+1)/2) * (3+2*sqrt(2) + (3-2*sqrt(2))*(-1)^n) / (n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 13 2014
MAPLE
c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G, x=0, 35): seq(coeff(Gser, x, n), n=0..32); # Emeric Deutsch, Mar 04 2007
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-8*x^2))/(x*(4*x-1+Sqrt(1-8*x^2))) )); // G. C. Greubel, Nov 07 2022
(SageMath)
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
[A126087(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Mar 03 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 04 2007
STATUS
approved