login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of c(2*x^2)/(1-x*c(2*x^2)), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
8

%I #41 Aug 06 2024 04:47:25

%S 1,1,3,5,15,29,87,181,543,1181,3543,7941,23823,54573,163719,381333,

%T 1143999,2699837,8099511,19319845,57959535,139480397,418441191,

%U 1014536117,3043608351,7426790749,22280372247,54669443141,164008329423

%N Expansion of c(2*x^2)/(1-x*c(2*x^2)), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).

%C Series reversion of x*(1+x)/(1+2*x+3*x^2) [offset 0]. - _Paul Barry_, Mar 13 2007

%C Hankel transform is 2^C(n+1,2). - _Philippe Deléham_, Mar 16 2007

%H Vincenzo Librandi, <a href="/A126087/b126087.txt">Table of n, a(n) for n = 0..200</a>

%H Alin Bostan, <a href="https://citeseerx.ist.psu.edu/pdf/749aef4c6f3668e652b5074e5268346ccecc88c9">Computer Algebra for Lattice Path Combinatorics</a>, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.

%H Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, <a href="https://arxiv.org/abs/2001.00393">Stieltjes moment sequences for pattern-avoiding permutations</a>, arXiv:2001.00393 [math.CO], 2020.

%F G.f.: (1-sqrt(1-8*x^2))/(x*(4*x-1+sqrt(1-8*x^2))). - _Emeric Deutsch_, Mar 04 2007

%F a(n) = Sum_{k=0..n} 2^(n-k)*A120730(n,k). - _Philippe Deléham_, Oct 16 2008

%F a(n) = Sum_(k=1..n} (1+(-1)^(n-k))*k*2^((n-k)/2-1)*C(n,(n+k)/2)/n, n>0. - _Vladimir Kruchinin_, Feb 18 2011

%F a(2*n) = A089022(n). - _Philippe Deléham_, Nov 02 2011

%F D-finite with recurrence: (n+1)*a(n) = 3*(n+1)*a(n-1) - 8*(2-n)*a(n-2) - 24*(n-2)*a(n-3). - _R. J. Mathar_, Nov 14 2011

%F a(n) ~ 2^(3*(n+1)/2) * (3+2*sqrt(2) + (3-2*sqrt(2))*(-1)^n) / (n^(3/2) * sqrt(Pi)). - _Vaclav Kotesovec_, Feb 13 2014

%p c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # _Emeric Deutsch_, Mar 04 2007

%t CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 13 2014 *)

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-8*x^2))/(x*(4*x-1+Sqrt(1-8*x^2))) )); // _G. C. Greubel_, Nov 07 2022

%o (SageMath)

%o def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)

%o def A126087(n): return sum(2^(n-k)*A120730(n,k) for k in range(n+1))

%o [A126087(n) for n in range(51)] # _G. C. Greubel_, Nov 07 2022

%Y Cf. A000108, A089022, A120730.

%K nonn

%O 0,3

%A _Philippe Deléham_, Mar 03 2007

%E More terms from _Emeric Deutsch_, Mar 04 2007