The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274666 Diagonal of the rational function 1/(1 - x - y + x y - x z - y z - x y z). 1
 1, 5, 43, 461, 5491, 69395, 910855, 12274925, 168668035, 2352544535, 33204000853, 473179375355, 6797163712639, 98299113206663, 1429765398030943, 20899401842991341, 306819063154144675, 4521526749077118143, 66858281393757281641, 991598171159871109391 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Annihilating differential operator: x*(2*x+5)*(2*x-1)*(x^2-47*x+3)*Dx^2 + (12*x^4-340*x^3-1319*x^2+530*x-15)*Dx + 4*x^3-24*x^2-445*x+75. LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..310 A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015. Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups" FORMULA G.f.: hypergeom([1/12, 5/12],[1],1728*x^5*(x^2-47*x+3)*(-1+2*x)^2/(1-20*x+78*x^2-44*x^3+x^4)^3)/(1-20*x+78*x^2-44*x^3+x^4)^(1/4). 0 = x*(2*x+5)*(2*x-1)*(x^2-47*x+3)*y'' + (12*x^4-340*x^3-1319*x^2+530*x-15)*y' + (4*x^3-24*x^2-445*x+75)*y, where y is the g.f. Recurrence: 3*n^2*(39*n - 64)*a(n) = (2067*n^3 - 5459*n^2 + 3947*n - 930)*a(n-1) - (3705*n^3 - 13490*n^2 + 15323*n - 5230)*a(n-2) + 2*(n-2)^2*(39*n - 25)*a(n-3). - Vaclav Kotesovec, Jul 05 2016 a(n) ~ sqrt(53 + 191/sqrt(13)) * (47 + 13*sqrt(13))^n / (sqrt(2)*Pi*n*6^(n+1)). - Vaclav Kotesovec, Jul 05 2016 MATHEMATICA CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^5*(x^2-47*x+3)*(-1+2*x)^2/(1-20*x+78*x^2-44*x^3+x^4)^3]/(1-20*x+78*x^2-44*x^3+x^4)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *) PROG (PARI) my(x='x, y='y, z='z); R = 1 / (1 - x - y + x*y - x*z - y*z - x*y*z); diag(n, expr, var) = { my(a = vector(n)); for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n)); for (k = 1, n, a[k] = expr; for (i = 1, #var, a[k] = polcoeff(a[k], k-1))); return(a); }; diag(10, R, [x, y, z]) (PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); read("hypergeom.gpi"); N = 20; x = 'x + O('x^N); Vec(hypergeom([1/12, 5/12], [1], 1728*x^5*(x^2-47*x+3)*(-1+2*x)^2/(1-20*x+78*x^2-44*x^3+x^4)^3, N)/(1-20*x+78*x^2-44*x^3+x^4)^(1/4)) CROSSREFS Cf. A268545-A268555. Sequence in context: A350117 A239265 A369023 * A301976 A083070 A191802 Adjacent sequences: A274663 A274664 A274665 * A274667 A274668 A274669 KEYWORD nonn AUTHOR Gheorghe Coserea, Jul 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 10:58 EDT 2024. Contains 375068 sequences. (Running on oeis4.)