login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274665
Diagonal of the rational function 1/(1 - x - y - z + x*y + x*z - y*z).
1
1, 4, 30, 280, 2890, 31584, 358176, 4168560, 49455450, 595480600, 7254787540, 89234708160, 1106335812400, 13808393670400, 173332340911200, 2186551157230560, 27701981424940890, 352297514508697800, 4495418315974868700, 57535568476437651600, 738373616359119126540
OFFSET
0,2
COMMENTS
Annihilating differential operator: (-2*x+29*x^2-27*x^3)*Dx^2 + (-2+58*x-81*x^2)*Dx + 8-24*x.
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: hypergeom([1/12, 5/12],[1],3456*x^5*(1-31/2*x+28*x^2-27/2*x^3)/(1-16*x+40*x^2)^3)/(1-16*x+40*x^2)^(1/4).
0 = (-2*x+29*x^2-27*x^3)*y'' + (-2+58*x-81*x^2)*y' + (8-24*x)*y, where y is the g.f.
Recurrence: 2*n^2*a(n) = (29*n^2 - 29*n + 8)*a(n-1) - 3*(3*n - 4)*(3*n - 2)*a(n-2). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ 3^(3*n + 3/2) / (Pi*sqrt(5)*n*2^(n+1)). - Vaclav Kotesovec, Jul 05 2016
MATHEMATICA
a[0] = 1; a[1] = 4; a[n_] := a[n] = ((29*n^2 - 29*n + 8)*a[n-1] - 3*(3*n - 4)*(3*n - 2)*a[n-2])/(2*n^2);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 01 2017, after Vaclav Kotesovec *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - z + x*y + x*z - y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 21; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], 3456*x^5*(1-31/2*x+28*x^2-27/2*x^3)/(1-16*x+40*x^2)^3, N)/(1-16*x+40*x^2)^(1/4))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 01 2016
STATUS
approved