OFFSET
0,2
COMMENTS
Annihilating differential operator: (-2*x+29*x^2-27*x^3)*Dx^2 + (-2+58*x-81*x^2)*Dx + 8-24*x.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..310
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
G.f.: hypergeom([1/12, 5/12],[1],3456*x^5*(1-31/2*x+28*x^2-27/2*x^3)/(1-16*x+40*x^2)^3)/(1-16*x+40*x^2)^(1/4).
0 = (-2*x+29*x^2-27*x^3)*y'' + (-2+58*x-81*x^2)*y' + (8-24*x)*y, where y is the g.f.
Recurrence: 2*n^2*a(n) = (29*n^2 - 29*n + 8)*a(n-1) - 3*(3*n - 4)*(3*n - 2)*a(n-2). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ 3^(3*n + 3/2) / (Pi*sqrt(5)*n*2^(n+1)). - Vaclav Kotesovec, Jul 05 2016
MATHEMATICA
a[0] = 1; a[1] = 4; a[n_] := a[n] = ((29*n^2 - 29*n + 8)*a[n-1] - 3*(3*n - 4)*(3*n - 2)*a[n-2])/(2*n^2);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 01 2017, after Vaclav Kotesovec *)
PROG
(PARI)
my(x='x, y='y, z='z);
R = 1/(1 - x - y - z + x*y + x*z - y*z);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(10, R, [x, y, z])
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 21; x = 'x + O('x^N);
Vec(hypergeom([1/12, 5/12], [1], 3456*x^5*(1-31/2*x+28*x^2-27/2*x^3)/(1-16*x+40*x^2)^3, N)/(1-16*x+40*x^2)^(1/4))
CROSSREFS
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Jul 01 2016
STATUS
approved