OFFSET
0,2
FORMULA
G.f.: exp( Sum_{k>=1} A378613(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x))^(4*(n+1)).
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(n-1,n-k).
G.f.: B(x)^4 where B(x) is the g.f. of A243667.
a(n) = 4 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+4,n)/(4*n+k+4).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x/(1-x))^4)/x)
(PARI) a(n, s=1, t=4, u=-4) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Dec 01 2024
STATUS
approved