login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1/x) * Series_Reversion( x * (1 - x/(1 - x))^4 ).
0

%I #14 Dec 03 2024 04:23:00

%S 1,4,30,276,2825,30884,353108,4170500,50485764,623084056,7810707894,

%T 99175174284,1272856327470,16486135484248,215212582153840,

%U 2828658852385572,37401956484705132,497174193516767600,6640063367021736728,89058042321373540912,1199031374607501831273

%N Expansion of (1/x) * Series_Reversion( x * (1 - x/(1 - x))^4 ).

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F G.f.: exp( Sum_{k>=1} A378613(k) * x^k/k ).

%F a(n) = (1/(n+1)) * [x^n] 1/(1 - x/(1 - x))^(4*(n+1)).

%F a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(n-1,n-k).

%F G.f.: B(x)^4 where B(x) is the g.f. of A243667.

%F a(n) = 4 * Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(n,k) * binomial(4*n+k+4,n)/(4*n+k+4).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x/(1-x))^4)/x)

%o (PARI) a(n, s=1, t=4, u=-4) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

%Y Cf. A001003, A211789, A369012.

%Y Cf. A243667, A371486, A378613.

%K nonn,new

%O 0,2

%A _Seiichi Manyama_, Dec 01 2024