login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378607
Dirichlet convolution of sigma and the Dirichlet inverse of A003961 (A346234).
3
1, 0, -1, -2, -1, 0, -3, -6, -7, 0, -1, 2, -3, 0, 1, -14, -1, 0, -3, 2, 3, 0, -5, 6, -11, 0, -25, 6, -1, 0, -5, -30, 1, 0, 3, 14, -3, 0, 3, 6, -1, 0, -3, 2, 7, 0, -5, 14, -31, 0, 1, 6, -5, 0, 1, 18, 3, 0, -1, -2, -5, 0, 21, -62, 3, 0, -3, 2, 5, 0, -1, 42, -5, 0, 11, 6, 3, 0, -3, 14, -79, 0, -5, -6, 1, 0, 1, 6, -7, 0, 9, 10
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n} A000203(d)*A346234(n/d).
a(n) = Sum_{d|n} A349388(d).
Multiplicative with a(p^e) = (p^(e+1) - nextprime(p)*(p^e-1) - 1)/(p-1), where nextprime(p) = A151800(p). - Amiram Eldar, Jan 12 2025
MATHEMATICA
f[p_, e_] := (p^(e + 1) - NextPrime[p]*(p^e - 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 12 2025 *)
PROG
(PARI)
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A346234(n) = (moebius(n)*A003961(n));
A378607(n) = sumdiv(n, d, sigma(d)*A346234(n/d));
CROSSREFS
Cf. A000203, A003961, A016825, A151800, A346234, A378606 (Dirichlet inverse).
Inverse Möbius transform of A349388.
Sequence in context: A230360 A244117 A263426 * A378606 A357103 A278882
KEYWORD
sign,mult,changed
AUTHOR
Antti Karttunen, Dec 11 2024
STATUS
approved