login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A378606
Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
3
1, 0, 1, 2, 1, 0, 3, 6, 8, 0, 1, 2, 3, 0, 1, 18, 1, 0, 3, 2, 3, 0, 5, 6, 12, 0, 40, 6, 1, 0, 5, 54, 1, 0, 3, 16, 3, 0, 3, 6, 1, 0, 3, 2, 8, 0, 5, 18, 40, 0, 1, 6, 5, 0, 1, 18, 3, 0, 1, 2, 5, 0, 24, 162, 3, 0, 3, 2, 5, 0, 1, 48, 5, 0, 12, 6, 3, 0, 3, 18, 200, 0, 5, 6, 1, 0, 1, 6, 7, 0, 9, 10, 5, 0, 3, 54, 3, 0, 8, 24
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n} A046692(d)*A003961(n/d).
a(n) = Sum_{d|n} A008683(d)*A349387(n/d).
Multiplicative with a(p^e) = q(p)^e - (p+1) * q(p)^(e-1) + p * q(p)^(e-2) if e >= 2, and q(p) - p - 1 if e = 1, where q(p) = A151800(p) is the prime next to p. - Amiram Eldar, Dec 11 2024
MATHEMATICA
f[p_, e_] := Module[{q = NextPrime[p]}, If[e == 1, q - p - 1, q^e - (p + 1)*q^(e - 1) + p*q^(e - 2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 11 2024 *)
PROG
(PARI)
A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2, i], -(f[1, i]+1), if(2==f[2, i], f[1, i], 0))); };
A378606(n) = sumdiv(n, d, A046692(d)*A003961(n/d));
CROSSREFS
Cf. A003961, A008683, A016825 (positions of 0's), A046692, A151800, A349387 (inverse Möbius transform), A378607 (Dirichlet inverse).
Sequence in context: A244117 A263426 A378607 * A357103 A278882 A153007
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Dec 11 2024
STATUS
approved