login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).
3

%I #18 Dec 12 2024 09:30:01

%S 1,0,1,2,1,0,3,6,8,0,1,2,3,0,1,18,1,0,3,2,3,0,5,6,12,0,40,6,1,0,5,54,

%T 1,0,3,16,3,0,3,6,1,0,3,2,8,0,5,18,40,0,1,6,5,0,1,18,3,0,1,2,5,0,24,

%U 162,3,0,3,2,5,0,1,48,5,0,12,6,3,0,3,18,200,0,5,6,1,0,1,6,7,0,9,10,5,0,3,54,3,0,8,24

%N Dirichlet convolution of A046692 and A003961, where A046692 is the Dirichlet inverse of sigma, and A003961 is fully multiplicative with a(prime(i)) = prime(i+1).

%H Antti Karttunen, <a href="/A378606/b378606.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

%F a(n) = Sum_{d|n} A046692(d)*A003961(n/d).

%F a(n) = Sum_{d|n} A008683(d)*A349387(n/d).

%F Multiplicative with a(p^e) = q(p)^e - (p+1) * q(p)^(e-1) + p * q(p)^(e-2) if e >= 2, and q(p) - p - 1 if e = 1, where q(p) = A151800(p) is the prime next to p. - _Amiram Eldar_, Dec 11 2024

%t f[p_, e_] := Module[{q = NextPrime[p]}, If[e == 1, q - p - 1, q^e - (p + 1)*q^(e - 1) + p*q^(e - 2)]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 11 2024 *)

%o (PARI)

%o A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961

%o A046692(n) = { my(f=factor(n)~); prod(i=1, #f, if(1==f[2,i], -(f[1,i]+1), if(2==f[2,i], f[1,i], 0))); };

%o A378606(n) = sumdiv(n,d,A046692(d)*A003961(n/d));

%Y Cf. A003961, A008683, A016825 (positions of 0's), A046692, A151800, A349387 (inverse Möbius transform), A378607 (Dirichlet inverse).

%K nonn,mult

%O 1,4

%A _Antti Karttunen_, Dec 11 2024