login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349387
Dirichlet convolution of A003961 with A055615 (Dirichlet inverse of n), where A003961 is fully multiplicative with a(p) = nextprime(p).
8
1, 1, 2, 3, 2, 2, 4, 9, 10, 2, 2, 6, 4, 4, 4, 27, 2, 10, 4, 6, 8, 2, 6, 18, 14, 4, 50, 12, 2, 4, 6, 81, 4, 2, 8, 30, 4, 4, 8, 18, 2, 8, 4, 6, 20, 6, 6, 54, 44, 14, 4, 12, 6, 50, 4, 36, 8, 2, 2, 12, 6, 6, 40, 243, 8, 4, 4, 6, 12, 8, 2, 90, 6, 4, 28, 12, 8, 8, 4, 54, 250, 2, 6, 24, 4, 4, 4, 18, 8, 20, 16, 18, 12, 6
OFFSET
1,3
COMMENTS
Multiplicative because A003961 and A055615 are.
Convolving this with A000010 gives A003972, and convolving this with A000203 gives A003973.
Multiplicative with a(p^e) = nextprime(p)^e - p * nextprime(p)^(e-1), where nextprime function is A151800. - Amiram Eldar, Nov 18 2021
FORMULA
a(n) = Sum_{d|n} A003961(n/d) * A055615(d).
For all n >= 1, a(A000040(n)) = A001223(n).
MATHEMATICA
f[p_, e_] := (q = NextPrime[p])^e - p * q^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A055615(n) = (n*moebius(n));
A349387(n) = sumdiv(n, d, A003961(n/d)*A055615(d));
CROSSREFS
Cf. A000040, A001223, A003961, A055615, A151800, A349388 (Dirichlet inverse), A349389 (sum with it), A378606 (Möbius transform).
Sequence in context: A335965 A225176 A349271 * A118665 A333238 A336526
KEYWORD
nonn,mult,changed
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved