login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349384
Dirichlet convolution of A003961 with the Dirichlet inverse of A048673, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.
7
1, 1, 2, 2, 3, 0, 5, 4, 6, 0, 6, -2, 8, 0, 0, 8, 9, -4, 11, -3, 0, 0, 14, -8, 12, 0, 18, -5, 15, -12, 18, 16, 0, 0, 0, -14, 20, 0, 0, -12, 21, -20, 23, -6, -12, 0, 26, -24, 30, -9, 0, -8, 29, -24, 0, -20, 0, 0, 30, -24, 33, 0, -20, 32, 0, -24, 35, -9, 0, -30, 36, -36, 39, 0, -18, -11, 0, -32, 41, -36, 54, 0, 44
OFFSET
1,3
COMMENTS
Convolving this with A336840 gives A003973.
FORMULA
a(n) = Sum_{d|n} A003961(n/d) * A323893(d).
a(n) = A349386(n) - A349385(n).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A048673(n) = (A003961(n)+1)/2;
memoA323893 = Map();
A323893(n) = if(1==n, 1, my(v); if(mapisdefined(memoA323893, n, &v), v, v = -sumdiv(n, d, if(d<n, A048673(n/d)*A323893(d), 0)); mapput(memoA323893, n, v); (v)));
A349384(n) = sumdiv(n, d, A003961(n/d)*A323893(d));
CROSSREFS
Cf. A003961, A048673, A323893, A349385 (Dirichlet inverse), A349386 (sum with it).
Cf. also A003973, A336840, A349572.
Sequence in context: A191361 A199784 A376931 * A127466 A342314 A099118
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved