login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A003961 with the Dirichlet inverse of A048673, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.
7

%I #11 Nov 26 2021 08:52:30

%S 1,1,2,2,3,0,5,4,6,0,6,-2,8,0,0,8,9,-4,11,-3,0,0,14,-8,12,0,18,-5,15,

%T -12,18,16,0,0,0,-14,20,0,0,-12,21,-20,23,-6,-12,0,26,-24,30,-9,0,-8,

%U 29,-24,0,-20,0,0,30,-24,33,0,-20,32,0,-24,35,-9,0,-30,36,-36,39,0,-18,-11,0,-32,41,-36,54,0,44

%N Dirichlet convolution of A003961 with the Dirichlet inverse of A048673, where A003961 is fully multiplicative with a(p) = nextprime(p), and A048673(n) = (1+A003961(n))/2.

%C Convolving this with A336840 gives A003973.

%H Antti Karttunen, <a href="/A349384/b349384.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(n) = Sum_{d|n} A003961(n/d) * A323893(d).

%F a(n) = A349386(n) - A349385(n).

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A048673(n) = (A003961(n)+1)/2;

%o memoA323893 = Map();

%o A323893(n) = if(1==n,1,my(v); if(mapisdefined(memoA323893,n,&v), v, v = -sumdiv(n,d,if(d<n,A048673(n/d)*A323893(d),0)); mapput(memoA323893,n,v); (v)));

%o A349384(n) = sumdiv(n,d,A003961(n/d)*A323893(d));

%Y Cf. A003961, A048673, A323893, A349385 (Dirichlet inverse), A349386 (sum with it).

%Y Cf. also A003973, A336840, A349572.

%K sign

%O 1,3

%A _Antti Karttunen_, Nov 17 2021