OFFSET
1,2
COMMENTS
a(n)=n iff n=2^k-1 or n=2.
LINKS
S.P. Eu, S.C. Liu, Y.N. Yeh, On the Congruences of Some Combinatorial Numbers, Studies in Applied Mathematics, 116(2006), 135-144.
EXAMPLE
The Narayana numbers are binomial(n-1, k-1)*binomial(n, k-1)/k. a(4)=4 since for n=4 there are two odd numbers among 1,6,6,1.
MATHEMATICA
a[n_] := Count[Table[Binomial[n - 1, k - 1] Binomial[n, k - 1]/k, {k, 1, n}], _?OddQ]; Array[a, 100] (* Amiram Eldar, Jul 02 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, binomial(n-1, k-1)*binomial(n, k-1)/k % 2); \\ Michel Marcus, Jul 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sen-Peng Eu, Jul 01 2020
STATUS
approved