OFFSET
0,2
COMMENTS
The entries of Baxter triangles are binomial(n+1, k-1)*binomial(n+1, k)*binomial(n+1, k+1)/(binomial(n+1, 1)*binomial(n+1, 2)).
LINKS
Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
FORMULA
a(n) is even if n>=1.
a(n) = n iff n is of the form 2^k-2.
a(2^k-3) = 2^k-2.
EXAMPLE
a(4)=2 as there are two odd numbers among 1,10,10,1.
MATHEMATICA
a[n_] := Count[Table[2 * Binomial[n, k] * Binomial[n + 1, k + 1] * Binomial[n + 2, k + 2]/((n - k + 1)^2 * (n - k + 2)), {k, 0, n}], _?OddQ]; Array[a, 100, 0] (* Amiram Eldar, Jul 02 2020 *)
PROG
(PARI) T(n, m) = 2*binomial(n, m)*binomial(n + 1, m + 1)*binomial(n + 2, m + 2)/(( n - m + 1)^2*(n - m + 2)); \\ A056939
a(n) = sum(m=0, n, T(n, m) % 2); \\ Michel Marcus, Jul 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Sen-Peng Eu, Jul 01 2020
STATUS
approved