login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346234
Dirichlet inverse of A003961, where A003961(n) is fully multiplicative with a(prime(k)) = prime(k+1).
11
1, -3, -5, 0, -7, 15, -11, 0, 0, 21, -13, 0, -17, 33, 35, 0, -19, 0, -23, 0, 55, 39, -29, 0, 0, 51, 0, 0, -31, -105, -37, 0, 65, 57, 77, 0, -41, 69, 85, 0, -43, -165, -47, 0, 0, 87, -53, 0, 0, 0, 95, 0, -59, 0, 91, 0, 115, 93, -61, 0, -67, 111, 0, 0, 119, -195, -71, 0, 145, -231, -73, 0, -79, 123, 0, 0, 143, -255, -83, 0, 0, 129
OFFSET
1,2
FORMULA
a(n) = A055615(A003961(n)).
a(n) = A008683(n) * A003961(n).
Multiplicative with a(p^e) = 0 if e > 1, and -nextprime(p) otherwise, where nextprime function is A151800. - Antti Karttunen, Nov 14 2021
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
v346234 = DirInverseCorrect(vector(up_to, n, A003961(n)));
A346234(n) = v346234[n];
(PARI)
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A346234(n) = (moebius(n)*A003961(n));
(PARI) A346234(n) = { my(f = factor(n)); prod(i=1, #f~, if(1<f[i, 2], 0, -nextprime(1+f[i, 1]))); }; \\ Antti Karttunen, Nov 14 2021
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 11 2021
EXTENSIONS
Keyword:mult added by Antti Karttunen, Nov 14 2021
STATUS
approved