login
A346231
Number of n-step 10-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2
1, 1, 11, 111, 1041, 9271, 81101, 725021, 6794611, 66508821, 665254791, 6674936601, 66755513931, 666897563121, 6686651885691, 67529142206631, 687755702224881, 7056692549851951, 72780288870993221, 752810967999798491, 7798329264904129201, 80874531810513679011
OFFSET
0,3
LINKS
FORMULA
a(n) == 1 (mod 10).
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),
add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),
i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))
end:
a:= n-> b(n, [0$10]):
seq(a(n), n=0..27);
CROSSREFS
Column k=10 of A335570.
Sequence in context: A101680 A267356 A215559 * A164553 A355280 A282911
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 11 2021
STATUS
approved