login
A346228
Number of n-step 7-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2
1, 1, 8, 57, 372, 2332, 14960, 102173, 732124, 5306652, 38253888, 275352960, 1996376544, 14642264736, 108536296800, 809764874325, 6057499056204, 45368515203628, 340472040666080, 2563725956556584, 19381407270110656, 147036877912623840, 1118355187220657856
OFFSET
0,3
LINKS
FORMULA
a(n) == 1 (mod 7).
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),
add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),
i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))
end:
a:= n-> b(n, [0$7]):
seq(a(n), n=0..27);
CROSSREFS
Column k=7 of A335570.
Sequence in context: A282394 A244201 A079926 * A283125 A108666 A295711
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 11 2021
STATUS
approved