login
A346227
Number of n-step 6-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
2
1, 1, 7, 43, 241, 1315, 7525, 46165, 292015, 1839901, 11536747, 72847417, 466127719, 3018752041, 19678318207, 128531220955, 840554295625, 5513681844355, 36333611660245, 240480114800023, 1596692607223561, 10621894482682471, 70761572688601777, 472172623607888563
OFFSET
0,3
LINKS
FORMULA
a(n) == 1 (mod 6).
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),
add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),
i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))
end:
a:= n-> b(n, [0$6]):
seq(a(n), n=0..27);
CROSSREFS
Column k=6 of A335570.
Sequence in context: A334241 A079925 A126718 * A081896 A363413 A193656
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jul 11 2021
STATUS
approved