login
A335570
Number A(n,k) of n-step k-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.
14
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 6, 1, 1, 1, 5, 13, 17, 10, 1, 1, 1, 6, 21, 40, 47, 20, 1, 1, 1, 7, 31, 81, 136, 125, 35, 1, 1, 1, 8, 43, 146, 325, 496, 333, 70, 1, 1, 1, 9, 57, 241, 686, 1433, 1753, 939, 126, 1, 1, 1, 10, 73, 372, 1315, 3476, 6473, 6256, 2597, 252, 1
OFFSET
0,9
LINKS
FORMULA
A(n,k) == 1 (mod k) for k >= 2.
EXAMPLE
A(2,2) = 3: [(0,0),(1,1),(2,2)], [(0,0),(1,1),(0,1)], [(0,0),(1,1),(1,0)].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 7, 13, 21, 31, 43, 57, ...
1, 6, 17, 40, 81, 146, 241, 372, ...
1, 10, 47, 136, 325, 686, 1315, 2332, ...
1, 20, 125, 496, 1433, 3476, 7525, 14960, ...
1, 35, 333, 1753, 6473, 18711, 46165, 102173, ...
...
MAPLE
b:= proc(n, l) option remember; `if`(n=0, 1, b(n-1, map(x-> x+1, l))+add(
`if`(l[i]>0, b(n-1, sort(subsop(i=l[i]-1, l))), 0), i=1..nops(l)))
end:
A:= (n, k)-> b(n, [0$k]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
b[n_, l_] := b[n, l] = If[n == 0, 1, b[n - 1, l + 1] + Sum[If[l[[i]] > 0, b[n - 1, Sort[ReplacePart[l, i -> l[[i]] - 1]]], 0], {i, 1, Length[l]}]];
A[n_, k_] := b[n, Table[0, {k}]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
CROSSREFS
Rows n=0+1,2-3 give: A000012, A000027(k+1), A002061(k+1).
Main diagonal gives A335588.
Cf. A340591.
Sequence in context: A303912 A133815 A305027 * A362644 A323718 A130580
KEYWORD
nonn,tabl,walk
AUTHOR
Alois P. Heinz, Jan 26 2021
STATUS
approved