|
|
A346229
|
|
Number of n-step 8-dimensional nonnegative lattice walks starting at the origin and using steps that increment all components or decrement one component by 1.
|
|
2
|
|
|
1, 1, 9, 73, 545, 3881, 27761, 208593, 1655241, 13490897, 110135641, 895031361, 7279880713, 59647817713, 493774294393, 4125976137817, 34688652854097, 292496479087385, 2469649871976929, 20883345481893257, 177031405058676369, 1505681846157691769
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) == 1 (mod 8).
|
|
MAPLE
|
b:= proc(n, l) option remember; `if`(n=0, 1, (k-> `if`(n>min(l),
add(`if`(l[i]=0, 0, b(n-1, sort(subsop(i=l[i]-1, l)))),
i=1..k)+b(n-1, map(x-> x+1, l)), (k+1)^n))(nops(l)))
end:
a:= n-> b(n, [0$8]):
seq(a(n), n=0..27);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,walk
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|