|
|
A079927
|
|
Solution to the Dancing School Problem with n girls and n+8 boys: f(n,8).
|
|
1
|
|
|
9, 73, 536, 3590, 22162, 127604, 693552, 3598120, 17990600, 87396728, 413977192, 1918222840, 8719846960, 38983643908, 171764779170, 747190081890, 3213760467348, 13684132415133, 57742830924831, 241687792906641
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
f(g,h) = per(B), the permanent of the (0,1)-matrix B of size g X g+h with b(i,j)=1 if and only if i <= j <= i+h. See A079908 for more information.
|
|
LINKS
|
Table of n, a(n) for n=1..20.
Jaap Spies, Dancing School Problems, Nieuw Archief voor Wiskunde 5/7 nr. 4, Dec 2006, pp. 283-285.
Jaap Spies, Dancing School Problems, Permanent solutions of Problem 29.
|
|
CROSSREFS
|
Cf. A079908-A079928.
Sequence in context: A291700 A143571 A244202 * A126641 A346229 A081627
Adjacent sequences: A079924 A079925 A079926 * A079928 A079929 A079930
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jaap Spies, Jan 28 2003
|
|
EXTENSIONS
|
Corrected by Jaap Spies, Feb 01 2004
More terms Dec 14 2006
|
|
STATUS
|
approved
|
|
|
|