login
A164588
a(n) = ((3 + sqrt(18))*(5 + sqrt(8))^n + (3 - sqrt(18))*(5 - sqrt(8))^n)/6.
2
1, 9, 73, 577, 4529, 35481, 277817, 2174993, 17027041, 133295529, 1043495593, 8168931937, 63949894289, 500627099961, 3919122796697, 30680567267633, 240180585132481, 1880236207775049, 14719292130498313, 115228905772807297, 902061091509601649
OFFSET
0,2
COMMENTS
Binomial transform of A057084. Second binomial transform of A002315. Third binomial transform of A108051 without initial 0. Fourth binomial transform of A096980. Fifth binomial transform of A094015.
FORMULA
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
G.f.: (1-x)/(1-10*x+17*x^2).
E.g.f.: (1/3)*exp(5*x)*(3*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 12 2017
MATHEMATICA
LinearRecurrence[{10, -17}, {1, 9}, 30] (* Harvey P. Dale, Sep 11 2016 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+3*r)*(5+2*r)^n+(3-3*r)*(5-2*r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009
(PARI) x='x+O('x^50); Vec((1-x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 12 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
EXTENSIONS
Extended by Klaus Brockhaus and R. J. Mathar Aug 24 2009
STATUS
approved