login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164589 a(n) = ((4 + 3*sqrt(2))*(1 + 2*sqrt(2))^n + (4 - 3*sqrt(2))*(1 - 2*sqrt(2))^n)/8. 2
1, 4, 15, 58, 221, 848, 3243, 12422, 47545, 182044, 696903, 2668114, 10214549, 39105896, 149713635, 573168542, 2194332529, 8400844852, 32162017407, 123129948778, 471394019405, 1804697680256, 6909153496347, 26451190754486, 101266455983401, 387691247248204 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A096886. Inverse binomial transform of A086347.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)

Index entries for linear recurrences with constant coefficients, signature (2,7).

FORMULA

a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 4.

G.f.: (1 + 2*x)/(1 - 2*x - 7*x^2).

E.g.f.: (1/4)*exp(x)*(4*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - G. C. Greubel, Aug 12 2017

MATHEMATICA

CoefficientList[Series[(1+2x)/(1-2x-7x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 7}, {1, 4}, 30] (* Harvey P. Dale, Jun 22 2011 *)

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((4+3*r)*(1+2*r)^n+(4-3*r)*(1-2*r)^n)/8: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 24 2009

(PARI) Vec((1+2*x)/(1-2*x-7*x^2)+O(x^99)) \\ Charles R Greathouse IV, Jul 16 2011

CROSSREFS

Cf. A086347, A096886.

Sequence in context: A026850 A109642 A307570 * A017950 A003126 A160156

Adjacent sequences:  A164586 A164587 A164588 * A164590 A164591 A164592

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus and R. J. Mathar, Aug 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 16:20 EST 2021. Contains 349394 sequences. (Running on oeis4.)