OFFSET
0,9
COMMENTS
A k-ary cactus is a planar k-gonal cactus with vertices on each polygon numbered 1..k counterclockwise with shared vertices having the same number. In total there are always exactly k ways to number a given cactus since all polygons are connected. See the reference for a precise definition.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274
Miklos Bona, Michel Bousquet, Gilbert Labelle, Pierre Leroux, Enumeration of m-ary cacti, arXiv:math/9804119 [math.CO], 1998-1999.
Wikipedia, Cactus graph
FORMULA
T(n,k) = (Sum_{d|n} phi(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1) for n > 0.
T(n,k) ~ A070914(n,k-1)/n for fixed k > 1.
EXAMPLE
Array begins:
===============================================================
n\k| 1 2 3 4 5 6 7 8
---+-----------------------------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 4 5 6 7 8 ...
3 | 1 3 6 10 15 21 28 36 ...
4 | 1 6 19 44 85 146 231 344 ...
5 | 1 10 57 197 510 1101 2100 3662 ...
6 | 1 28 258 1228 4051 10632 23884 47944 ...
7 | 1 63 1110 7692 33130 107062 285390 662628 ...
8 | 1 190 5475 52828 291925 1151802 3626295 9711032 ...
9 | 1 546 27429 373636 2661255 12845442 47813815 147766089 ...
...
MATHEMATICA
T[0, _] = 1;
T[n_, k_] := DivisorSum[n, EulerPhi[n/#] Binomial[k #, #]&]/n - (k-1) Binomial[n k, n]/((k-1) n + 1);
Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
PROG
(PARI) T(n, k)={if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 02 2018
STATUS
approved