OFFSET
0,9
COMMENTS
REFERENCES
G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 0..275 (first 23 antidiagonals)
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy]
FORMULA
T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.
EXAMPLE
n-th row lists n-dimensional partitions; table begins with n=0:
[1,1,1,1,1,1,1,1,1,1,1,1,...],
[1,1,2,3,5,7,11,15,22,30,42,56,...],
[1,1,3,6,13,24,48,86,160,282,500,859,...],
[1,1,4,10,26,59,140,307,684,1464,3122,...],
[1,1,5,15,45,120,326,835,2145,5345,...],
[1,1,6,21,71,216,657,1907,5507,15522,...],
[1,1,7,28,105,357,1197,3857,12300,38430,...],
[1,1,8,36,148,554,2024,7134,24796,84625,...],
[1,1,9,45,201,819,3231,12321,46209,170370,...],
[1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
k=0: k=1: k=2: k=3: k=4: k=5: k=6: k=7: k=8:
n=0: 1 1 1 1 1 1 1 1 1
n=1: 1 1 2 3 5 7 11 15 22
n=2: 1 1 3 6 13 24 48 86 160
n=3: 1 1 4 10 26 59 140 307 684
n=4: 1 1 5 15 45 120 326 835 2145
n=5: 1 1 6 21 71 216 657 1907 5507
n=6: 1 1 7 28 105 357 1197 3857 12300
n=7: 1 1 8 36 148 554 2024 7134 24796
n=8: 1 1 9 45 201 819 3231 12321 46209
n=9: 1 1 10 55 265 1165 4927 20155 80920
MATHEMATICA
trans[x_]:=If[x=={}, {}, Transpose[x]];
levptns[n_, k_]:=If[k==1, IntegerPartitions[n], Join@@Table[Select[Tuples[levptns[#, k-1]&/@y], And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#, ConstantArray[n, k-1]]&/@#)])&], {y, IntegerPartitions[n]}]];
Table[If[sum==k, 1, Length[levptns[k, sum-k]]], {sum, 0, 10}, {k, 0, sum}] (* Gus Wiseman, Jan 27 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 07 2004
STATUS
approved