login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096749 Number of partitions of n into distinct parts, the least being 2. 3
0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 20, 24, 28, 32, 38, 44, 51, 59, 68, 78, 91, 103, 118, 136, 155, 176, 201, 228, 259, 294, 332, 375, 425, 478, 538, 607, 681, 764, 858, 961, 1075, 1203, 1343, 1499, 1673, 1863, 2073, 2308, 2564, 2847, 3161, 3504 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

The old entry with this sequence number was a duplicate of A071569.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A025148(n-2), n>2. - R. J. Mathar, Jul 31 2008

G.f.: x^2*product_{j>=3} (1+x^j). - R. J. Mathar, Jul 31 2008

a(n) = A025148(n-2), n>1. - R. J. Mathar, Sep 30 2008

MAPLE

b:= proc(n, i) option remember;

      `if`(n=0, 1, `if`((i-2)*(i+3)/2<n, 0,

       add(b(n-i*j, i-1), j=0..min(1, n/i))))

    end:

a:= n-> `if`(n<2, 0, b(n-2$2)):

seq(a(n), n=0..60);  # Alois P. Heinz, Feb 07 2014

MATHEMATICA

b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-2)*(i+3)/2<n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<2, 0, b[n-2, n-2]]; Table[a[n], {n, 0, 60}] (* Jean-Fran├žois Alcover, Oct 13 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A025147.

Sequence in context: A217569 A026823 A025148 * A036821 A237980 A026798

Adjacent sequences:  A096746 A096747 A096748 * A096750 A096751 A096752

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Sep 28 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 05:48 EDT 2020. Contains 334649 sequences. (Running on oeis4.)