login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096749
Number of partitions of n into distinct parts, the least being 2.
7
0, 0, 1, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 15, 17, 20, 24, 28, 32, 38, 44, 51, 59, 68, 78, 91, 103, 118, 136, 155, 176, 201, 228, 259, 294, 332, 375, 425, 478, 538, 607, 681, 764, 858, 961, 1075, 1203, 1343, 1499, 1673, 1863, 2073, 2308, 2564, 2847, 3161, 3504
OFFSET
0,10
COMMENTS
The old entry with this sequence number was a duplicate of A071569.
a(n), n>2 is the Euler transform of [0,0,1,1,1] joined with period [0,1]. - Georg Fischer, Aug 15 2020
LINKS
FORMULA
G.f.: x^2*Product_{j>=3} (1+x^j). - R. J. Mathar, Jul 31 2008
a(n) = A025148(n-2), n>1. - R. J. Mathar, Sep 30 2008
G.f.: Sum_{k>=1} x^(k*(k + 3)/2) / Product_{j=1..k-1} (1 - x^j). - Ilya Gutkovskiy, Nov 24 2020
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`((i-2)*(i+3)/2<n, 0,
add(b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> `if`(n<2, 0, b(n-2$2)):
seq(a(n), n=0..60); # Alois P. Heinz, Feb 07 2014
# Using the function EULER from Transforms (see link at the bottom of the page).
[0, 0, 1, op(EULER([0, 0, 1, 1, seq(irem(n, 2), n=1..57)]))]; # Peter Luschny, Aug 19 2020
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[(i-2)*(i+3)/2<n, 0, Sum[b[n-i*j, i-1], {j, 0, Min[1, n/i]}]]]; a[n_] := If[n<2, 0, b[n-2, n-2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
Join[{0}, Table[Count[Last /@ Select[IntegerPartitions@n, DeleteDuplicates[#] == # &], 2], {n, 66}]] (* Robert Price, Jun 13 2020 *)
CROSSREFS
Cf. A096765 (least=1), A022824 (3), A022825 (4), A022826 (5), A022827 (6), A022828 (7), A022829 (8), A022830 (9), A022831 (10).
Sequence in context: A335766 A026823 A025148 * A036821 A237980 A026798
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 28 2008
STATUS
approved