The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096748 Expansion of (1+x)^2/(1-x^2-x^4). 5
 1, 2, 2, 2, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 34, 42, 55, 68, 89, 110, 144, 178, 233, 288, 377, 466, 610, 754, 987, 1220, 1597, 1974, 2584, 3194, 4181, 5168, 6765, 8362, 10946, 13530, 17711, 21892, 28657, 35422, 46368, 57314, 75025, 92736, 121393, 150050 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The ratio a(n+1) / a(n) increasingly approximates two constants connected to the golden ratio: (phi+1)/2 = 1.30901699... = A239798 and (phi-1)*2 = 1.23606797... = A134972, according to whether n is odd or even. - Davide Rotondo, Jul 31 2020 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,1). FORMULA a(n) = a(n-2)+a(n-4). a(n) = 2*F((n+1)/2)*(1-(-1)^n)/2+F((n+4)/2)*(1+(-1)^n)/2. a(2*n) = A000045(n+2); a(2*n+1) = 2*A000045(n+1). a(n) = Sum_{k=0..n} binomial(floor((n-k)/2), floor(k/2)). - Paul Barry, Jul 24 2004 a(n) = A079977(n)+A079977(n-2)+2*A079977(n-1). - R. J. Mathar, Jul 15 2013 MATHEMATICA CoefficientList[Series[(1+x)^2/(1-x^2-x^4), {x, 0, 50}], x] (* or *) LinearRecurrence[{0, 1, 0, 1}, {1, 2, 2, 2}, 50] (* Harvey P. Dale, Jan 29 2012 *) CROSSREFS Cf. A000045, A079977. Cf. A134972 and A239798 (limiting ratios for a(n+1)/a(n)). Sequence in context: A102240 A026837 A005855 * A263659 A022866 A099388 Adjacent sequences:  A096745 A096746 A096747 * A096749 A096750 A096751 KEYWORD easy,nonn AUTHOR Paul Barry, Jul 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 00:09 EDT 2021. Contains 343685 sequences. (Running on oeis4.)