OFFSET
0,2
COMMENTS
See page 16 in the reference.
A zigzag is a substring which is either 010 or 101. The necklaces 01 and 10 are considered to be with a zigzag. Necklaces do not allow turnover.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
FORMULA
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A007039(d). - Andrew Howroyd, Feb 26 2017
EXAMPLE
For n=5 the necklaces are 00000, 11111, 00011, 00111 so a(5)=4.
MATHEMATICA
(* b = A007039 *) b[n_ /; n<4] = 2; b[4] = 6; b[n_] := b[n] = 2*b[n-1] - b[n-2] + b[n-4];
a[0] = 0; a[n_] := (1/n) * DivisorSum[n, EulerPhi[n/#] * b[#]&];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Oct 23 2015
EXTENSIONS
a(25)-a(40) from Andrew Howroyd, Feb 26 2017
STATUS
approved