login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263655
Table T(m, n) of number of circular binary strings with m ones and n zeros without zigzags, read by antidiagonals (see reference for precise definition).
5
0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 4, 0, 1, 1, 0, 5, 5, 0, 1, 1, 0, 6, 6, 6, 0, 1, 1, 0, 7, 7, 7, 7, 0, 1, 1, 0, 8, 8, 12, 8, 8, 0, 1, 1, 0, 9, 9, 18, 18, 9, 9, 0, 1, 1, 0, 10, 10, 25, 30, 25, 10, 10, 0, 1, 1, 0, 11, 11, 33, 44, 44, 33, 11, 11, 0, 1
OFFSET
0,13
COMMENTS
See page 5, figure 1 in the reference.
A zigzag is a substring which is either 010 or 101.
LINKS
E. Munarini and N. Z. Salvi, Circular Binary Strings without Zigzags, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.
FORMULA
From Andrew Howroyd, Feb 26 2017: (Start)
T(n,m) = Sum_{k>=0} U(m,k)*U(n,k) - 2*V(m,k)*V(n,k)*(-1)^k
where U(r,k)=binomial(r-k+2*floor(k/3), floor(k/3)), V(r,k)=binomial(r-ceiling(k/2)-1, floor(k/2)).
T(n,0)=1 for n>=1, T(n,1)=0 for n>=1, T(n,2)=n+2 for n>=2, T(n,3)=n+3 for n>=2.
T(n,4)=(n-1)*(n+4)/2 for n>=3, T(n,5)=(n-2)*(n+5) for n>=3. (End)
EXAMPLE
Table starts:
0 1 1 1 1 1 1 1 1 1 1 1 1 ...
1 0 0 0 0 0 0 0 0 0 0 0 0 ...
1 0 4 5 6 7 8 9 10 11 12 13 14 ...
1 0 5 6 7 8 9 10 11 12 13 14 15 ...
1 0 6 7 12 18 25 33 42 52 63 75 88 ...
1 0 7 8 18 30 44 60 78 98 120 144 170 ...
1 0 8 9 25 44 70 104 147 200 264 340 429 ...
1 0 9 10 33 60 104 168 255 368 510 684 893 ...
1 0 10 11 42 78 147 255 412 629 918 1292 1765 ...
1 0 11 12 52 98 200 368 629 1014 1558 2300 3283 ...
1 0 12 13 63 120 264 510 918 1558 2514 3885 5786 ...
MATHEMATICA
max = 11;
U[r_, k_] := Binomial[r - k + 2*Floor[k/3], Floor[k/3]];
V[r_, k_] := Binomial[r - Ceiling[k/2] - 1, Floor[k/2]];
T[0, 0] = T[1, 1] = 0;
T[0, _] = T[_, 0] = 1;
T[n_ /; n >= 2, m_] /; m <= n := T[n, m] = Switch[m, 1, 0, 2, n + 2, 3, n + 3, _, Sum[ U[m, k]*U[n, k] - 2*V[m, k]*V[n, k]*(-1)^k, {k, 0, max-3}]];
T[n_, m_] /; m > n := T[m, n];
Table[T[n - k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 01 2018, after Andrew Howroyd *)
CROSSREFS
Main diagonal is A263656. Antidiagonal sums are A007039.
Sequence in context: A348304 A006838 A061309 * A329078 A059064 A321316
KEYWORD
tabl,nonn
AUTHOR
Felix Fröhlich, Oct 23 2015
EXTENSIONS
a(66)-a(77) from Andrew Howroyd, Feb 26 2017
STATUS
approved