OFFSET
0,8
COMMENTS
T(n,k) is the constant term in the expansion of (Sum_{j=0..n} (x^j + 1/x^j)*(y^(n-j) + 1/y^(n-j)) - x^n - 1/x^n - y^n - 1/y^n)^k for n > 0.
LINKS
Seiichi Manyama, Antidiagonals n = 0..25, flattened
Wikipedia, Taxicab geometry.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 4, 0, 36, 0, ...
1, 0, 8, 24, 216, 1200, ...
1, 0, 12, 0, 588, 0, ...
1, 0, 16, 48, 1200, 10200, ...
1, 0, 20, 0, 2100, 0, ...
PROG
(PARI) {T(n, k) = if(n==0, 1, polcoef(polcoef((sum(j=0, n, (x^j+1/x^j)*(y^(n-j)+1/y^(n-j)))-x^n-1/x^n-y^n-1/y^n)^k, 0), 0))}
CROSSREFS
KEYWORD
AUTHOR
Seiichi Manyama, Nov 04 2019
STATUS
approved