login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185690
Exponential Riordan array (1,sin(x)).
2
1, 0, 1, -1, 0, 1, 0, -4, 0, 1, 1, 0, -10, 0, 1, 0, 16, 0, -20, 0, 1, -1, 0, 91, 0, -35, 0, 1, 0, -64, 0, 336, 0, -56, 0, 1, 1, 0, -820, 0, 966, 0, -84, 0, 1, 0, 256, 0, -5440, 0, 2352, 0, -120, 0, 1, -1, 0, 7381, 0, -24970, 0, 5082, 0, -165, 0, 1, 0, -1024, 0, 87296, 0, -90112, 0, 10032, 0, -220, 0, 1
OFFSET
1,8
COMMENTS
The row n=0 with T(0,0)=1 and the column T(n,0)=0, n>0, are not entered into the sequence here.
A signed version of A136630 (apart from row 0 and column 0). - Peter Bala, Oct 06 2011
Also the Bell transform of the sequence "a(n) = (-1)^(n/2) if n is even else 0" without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
LINKS
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565, [math.CO], 2010.
FORMULA
T(n,k) = 2^(1-k)/k! *Sum_{i=0..floor(k/2)} (-1)^(floor((n+k)/2)-i) *binomial(k,i) *(2*i-k)^n, for even(n-k).
EXAMPLE
Array begins:
1;
0, 1;
-1, 0, 1;
0, -4, 0, 1;
1, 0, -10, 0, 1;
0, 16, 0, -20, 0, 1;
-1, 0, 91, 0, -35, 0, 1;
0, -64, 0, 336, 0, -56, 0, 1;
MAPLE
A185690 := proc(n, k) if type(k+n, 'even') then 2^(1-k)/k! * add( (-1)^(floor((n+k)/2)-i)*binomial(k, i)*(2*i-k)^n, i=0..floor(k/2)) ; else 0; end if; end proc: # R. J. Mathar, Feb 21 2011
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> `if`(n::even, (-1)^(n/2), 0), 10); # Peter Luschny, Jan 29 2016
MATHEMATICA
t[n_, k_] /; OddQ[n - k] = 0; t[n_, k_] /; EvenQ[n - k] := 2^(1-k)/k!* Sum[ (-1)^(Floor[(n+k)/2] - i)*Binomial[k, i]*(2*i-k)^n, {i, 0, k/2}]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
B = BellMatrix[Function[n, If[EvenQ[n], (-1)^(n/2), 0]], rows];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
(Python)
from sympy import binomial, factorial as f, floor
def T(n, k):
return 0 if (n - k)%2 else 2**(1 - k)*sum([(-1)**((n + k)//2 - i)*binomial(k, i)*(2*i - k)**n for i in range(k//2 + 1)])//f(k)
for n in range(1, 11): print([T(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Jul 11 2017
CROSSREFS
Cf. A136630.
Sequence in context: A329078 A059064 A321316 * A298248 A250204 A096459
KEYWORD
sign,tabl
AUTHOR
Vladimir Kruchinin, Feb 10 2011
STATUS
approved