login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185688
First differences of A060819(n-4)*A060819(n).
1
2, -2, 3, 5, -2, 18, -19, 43, -30, 62, -71, 111, -82, 130, -153, 209, -158, 222, -265, 337, -258, 338, -407, 495, -382, 478, -579, 683, -530, 642, -781, 901, -702, 830, -1013, 1149, -898, 1042
OFFSET
1,1
COMMENTS
The sequence b(n) = A060819(n-4)*A060819(n) is -3, -1, -3, 0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165 for n>=1, an extension of A061037. Its first differences b(n+1)-b(n) = a(n) define the current sequence.
First differences of the quadrisection are a(4n+4)-a(4n) = 8+30*n.
LINKS
FORMULA
a(2*n+1) + a(2*n+2) = 8*n.
G.f. ( x*(2+3*x^2+8*x^3+24*x^5+24*x^7+8*x^9-4*x^6+6*x^8+3*x^10) ) / ( (x-1)^2*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Feb 16 2011
a(n) = -a(n-1) -a(n-2) -a(n-3) +2*a(n-4) +2*a(n-5) +2*a(n-6) +2*a(n-7) -a(n-8) -a(n-9) -a(n-10) -a(n-11).
a(n)=3*a(n-4) -3*a(n-8) +a(n-12). - Paul Curtz, Feb 17 2011
a(4n) + a(4n+1) +a(4n+2) +a(4n+3) = 2*n = A005843(n). - Paul Curtz, Feb 17 2011
MAPLE
A060819 := proc(n) n/igcd(n, 4) ; end proc:
A185688b := proc(n) A060819(n-4)*A060819(n) ; end proc:
A185688 := proc(n) A185688b(n+1)-A185688b(n) ; end proc: # R. J. Mathar, Feb 16 2011
MATHEMATICA
Rest[CoefficientList[Series[(x*(2 + 3*x^2 + 8*x^3 + 24*x^5 + 24*x^7 + 8*x^9 - 4*x^6 + 6*x^8 + 3*x^10))/((x - 1)^2*(1 + x)^3*(x^2 + 1)^3), {x, 0, 50}], x]] (* G. C. Greubel, Jul 10 2017 *)
LinearRecurrence[{-1, -1, -1, 2, 2, 2, 2, -1, -1, -1, -1}, {2, -2, 3, 5, -2, 18, -19, 43, -30, 62, -71}, 40] (* Harvey P. Dale, Oct 03 2023 *)
PROG
(PARI) Vec((2+3*x^2+8*x^3+24*x^5+24*x^7+8*x^9-4*x^6+6*x^8+3*x^10)/(x-1)^2/(1+x)^3/(x^2+1)^3+O(x^99)) \\ Charles R Greathouse IV, Feb 08 2012
CROSSREFS
Sequence in context: A302495 A368255 A368256 * A203955 A039638 A090926
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Feb 10 2011
STATUS
approved