The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060819 a(n) = n / gcd(n,4). 61
 1, 1, 3, 1, 5, 3, 7, 2, 9, 5, 11, 3, 13, 7, 15, 4, 17, 9, 19, 5, 21, 11, 23, 6, 25, 13, 27, 7, 29, 15, 31, 8, 33, 17, 35, 9, 37, 19, 39, 10, 41, 21, 43, 11, 45, 23, 47, 12, 49, 25, 51, 13, 53, 27, 55, 14, 57, 29, 59, 15, 61, 31, 63, 16, 65, 33, 67, 17, 69, 35, 71, 18, 73, 37, 75, 19 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS From Peter Bala, Feb 19 2019: (Start) We make some general remarks about the sequence a(n) = numerator(n/(n + k)) = n/gcd(n,k) for k a fixed positive integer. The present sequence is the case k = 4. Several other cases are listed in the Crossrefs. In addition to being multiplicative these sequences are also strong divisibility sequences, that is, gcd(a(n),a(m)) = a(gcd(n, m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). By the multiplicativeness and strong divisibility property of the sequence a(n) it follows that if gcd(n, m) = 1 then a(a(n)*a(m) ) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m)) ) = a(a(a(n))) * a(a(a(m))) and so on. The sequence a(n) has the rational generating function Sum_{d divides k} f(d)*x^d/(1 - x^d)^2, where f(n) is the Dirichlet inverse of the Euler totient function A000010. f(n) is a multiplicative function defined on prime powers p^k by f(p^k) = 1 - p. See A023900. Cf. A181318. (End) LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Peter Bala, A note on the sequence of numerators of a rational function, 2019. Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1). FORMULA G.f.: x*(1 +x +3*x^2 +x^3 +3*x^4 +x^5 +x^6)/(1 - x^4)^2. a(n) = 2*a(n-4) - a(n-8). a(n) = (n/16)*(11 - 5*(-1)^n - i^n - (-i)^n). - Ralf Stephan, Mar 15 2003 a(2*n+1) = a(4*n+2) = 2*n+1, a(4*n+4) = n+1. - Ralf Stephan, Jun 10 2005 Multiplicative with a(2^e) = 2^max(0, e-2), a(p^e) = p^e, p >= 3. - Mitch Harris, Jun 29 2005 a(n) = A167192(n+4,4). - Reinhard Zumkeller, Oct 30 2009 From R. J. Mathar, Apr 18 2011: (Start) a(n) = A109045(n)/4. Dirichlet g.f.: zeta(s-1)*(1-1/2^s-1/2^(2s)). (End) a(n+4) - a(n) = A176895(n). - Paul Curtz, Apr 05 2011 a(n) = numerator(Sum_{k=1..n} 1/((k+1)*(k+2))). This summation has a closed form of 1/2 - 1/(n+2) and denominator of A145979(n). - Gary Detlefs, Sep 16 2011 a((2*n-1)*2^p) = ceiling(2^(p-2))*(2*n-1), p >= 0 and n >= 1. - Johannes W. Meijer, Feb 06 2013 a(n) = n / A109008(n). - Reinhard Zumkeller, Nov 25 2013 a(n) = denominator((2n-4)/n). - Wesley Ivan Hurt, Dec 22 2016 From Peter Bala, Feb 21 2019: (Start) O.g.f.: Sum_{n >= 0} a(n)*x^n = F(x) - F(x^2) - F(x^4), where F(x) = x/(1 - x)^2. More generally, Sum_{n >= 0} (a(n)^m)*x^n = F(m,x) + (1 - 2^m)*( F(m,x^2) + F(m,x^4) ), where F(m,x) = A(m,x)/(1 - x)^(m+1) with A(m,x) the m_th Eulerian polynomial: A(1,x) = x, A(2,x) = x*(1 + x), A(3,x) = x*(1 + 4*x + x^2) - see A008292. Repeatedly applying the Euler operator x*d/dx or its inverse operator to the o.g.f. for the sequence a(n) produces generating functions for the sequences ((n^m)*a(n))n>=1 for m in Z. Some examples are given below. (End) Sum_{k=1..n} a(k) ~ (11/32) * n^2. - Amiram Eldar, Nov 25 2022 EXAMPLE From Peter Bala, Feb 21 2019: (Start) Sum_{n >= 1} n*a(n)*x^n = G(x) - 2*G(x^2) - 4*G(x^4), where G(x) = x*(1 + x)/(1 - x)^3. Sum_{n >= 1} (1/n)*a(n)*x^n = H(x) - (1/2)*H(x^2) - (1/4)*H(x^4), where H(x) = x/(1 - x). Sum_{n >= 1} (1/n^2)*a(n)*x^n = L(x) - (1/2^2)*L(x^2) - (1/4^2)*L(x^4), where L(x) = Log(1/(1 - x)). Sum_{n >= 1} (1/a(n))*x^n = L(x) + (1/2)*L(x^2) + (1/2)*L(x^4). (End) MAPLE A060819 := n -> numer(1/2-1/(n+2)): seq(A060819(n), n=1..75); # Gary Detlefs, Sep 16 2011 MATHEMATICA f[n_]:= n/GCD[n, 4]; Array[f, 80] PROG (Sage) [lcm(n, 4)/4 for n in (1..80)] # Zerinvary Lajos, Jun 07 2009 (PARI) { for (n=1, 1000, write("b060819.txt", n, " ", n / gcd(n, 4)); ) } \\ Harry J. Smith, Jul 12 2009 (Haskell) a060819 n = n `div` a109008 n -- Reinhard Zumkeller, Nov 25 2013 (Magma) [n/GCD(n, 4): n in [1..80]]; // G. C. Greubel, Sep 19 2018 (GAP) List([1..80], n->n/Gcd(n, 4)); # Muniru A Asiru, Feb 20 2019 CROSSREFS Cf. A026741, A051176, A060791, A060789. Cf. Other sequences given by the formula numerator(n/(n + k)): A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20). Cf. A000010, A023900, A061037, A061038, A109008, A145979, A167192, A176895, A181318, A220466. Sequence in context: A318060 A336652 A136655 * A318661 A089654 A233526 Adjacent sequences: A060816 A060817 A060818 * A060820 A060821 A060822 KEYWORD nonn,mult,easy AUTHOR Len Smiley, Apr 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 05:44 EDT 2023. Contains 365724 sequences. (Running on oeis4.)