OFFSET
1,2
COMMENTS
As well as being a multiplicative sequence, a(n) is also strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). Peter Bala, Feb 20 2019
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,0,0,-1).
FORMULA
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/(1 - x^5)^2.
a(n) = n/5 if 5|n, otherwise a(n) = n.
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109046(n)/5.
Dirichlet g.f.: zeta(s-1)*(1-4/5^s). (End)
G.f.: x*(x^4 + x^3 - x^2 + x + 1)*(x^4 + x^3 + 3*x^2 + x + 1)/((x - 1)^2*(x^4 + x^3 + x^2 + x + 1)^2). - R. J. Mathar, Oct 31 2015
From Peter Bala, Feb 20 2019: (Start)
a(n) = numerator(n/(n + 5)).
If gcd(n, m) = 1 then a(a(n)*a(m)) = a(a(n)) * a(a(m)), a(a(a(n))*a(a(m))) = a(a(a(n))) * a(a(a(m))) and so on.
G.f.: x/(1 - x)^2 - 4*x^5/(1 - x^5)^2. (End)
Sum_{k=1..n} a(k) ~ (21/50) * n^2. - Amiram Eldar, Nov 25 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*log(2)/5. - Amiram Eldar, Sep 08 2023
MAPLE
seq(n/gcd(n, 5), n=1..80); # Muniru A Asiru, Feb 20 2019
MATHEMATICA
f[n_]:=Numerator[n/(n+5)]; Array[f, 100] (* Vladimir Joseph Stephan Orlovsky, Feb 16 2011*)
PROG
(Sage) [lcm(n, 5)/5 for n in range(1, 51)] # Zerinvary Lajos, Jun 07 2009
(PARI) { for (n=1, 1000, write("b060791.txt", n, " ", n / gcd(n, 5)); ) } \\ Harry J. Smith, Jul 12 2009
(PARI) for (n=1, 1000, print1(n/(5-4*(n%5>0))", ")) \\ Zak Seidov, Feb 17 2011
(Magma) [n/GCD(n, 5): n in [1..100]]; // G. C. Greubel, Feb 20 2019
(GAP) List([1..80], n->n/Gcd(n, 5)); # Muniru A Asiru, Feb 20 2019
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Len Smiley, Apr 26 2001
EXTENSIONS
Extended (using terms from b-file) by Michel Marcus, Feb 08 2014
STATUS
approved