login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106614
a(n) = numerator of n/(n+13).
20
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 3, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 4, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 5, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
OFFSET
0,3
COMMENTS
In general, the numerators of n/(n+p) for prime p and n >= 0, form a sequence with the g.f.: x/(1-x)^2 - (p-1)*x^p/(1-x^p)^2. - Paul D. Hanna, Jul 27 2005
a(n) <> n iff n = 13 * k, in this case, a(n) = k. - Bernard Schott, Feb 19 2019
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,-1).
FORMULA
G.f.: x/(1-x)^2 - 12*x^13/(1-x^13)^2. - Paul D. Hanna, Jul 27 2005
Dirichlet g.f.: zeta(s-1)*(1-12/13^s). - R. J. Mathar, Apr 18 2011
a(n) = 2*a(n-13) - a(n-26). - G. C. Greubel, Feb 19 2019
From Amiram Eldar, Nov 25 2022: (Start)
Multiplicative with a(13^e) = 13^(e-1), and a(p^e) = p^e if p != 13.
Sum_{k=1..n} a(k) ~ (157/338) * n^2. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 25*log(2)/13. - Amiram Eldar, Sep 08 2023
MAPLE
seq(numer(n/(n+13)), n=0..80); # Muniru A Asiru, Feb 19 2019
MATHEMATICA
f[n_]:=Numerator[n/(n+13)]; Array[f, 100, 0] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2011 *)
PROG
(Sage) [lcm(n, 13)/13for n in range(0, 100)] # Zerinvary Lajos, Jun 09 2009
(Magma) [Numerator(n/(n+13)): n in [0..100]]; // Vincenzo Librandi, Apr 18 2011
(PARI) vector(100, n, n--; numerator(n/(n+13))) \\ G. C. Greubel, Feb 19 2019
(PARI) a(n)=if(n%13, n, n/13) \\ Charles R Greathouse IV, Jan 24 2022
(GAP) List([0..80], n->NumeratorRat(n/(n+13))); # Muniru A Asiru, Feb 19 2019
CROSSREFS
Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106615 thru A106621 (k = 14 thru 20).
Sequence in context: A053833 A167973 A087999 * A297242 A043272 A278064
KEYWORD
nonn,frac,mult,easy
AUTHOR
N. J. A. Sloane, May 15 2005
STATUS
approved