login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060789 a(n) = n / (gcd(n,2) * gcd(n,3)). 28
1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 11, 2, 13, 7, 5, 8, 17, 3, 19, 10, 7, 11, 23, 4, 25, 13, 9, 14, 29, 5, 31, 16, 11, 17, 35, 6, 37, 19, 13, 20, 41, 7, 43, 22, 15, 23, 47, 8, 49, 25, 17, 26, 53, 9, 55, 28, 19, 29, 59, 10, 61, 31, 21, 32, 65, 11, 67, 34, 23, 35, 71, 12, 73, 37, 25, 38, 77 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

a(n+2) is absolute value of numerator of determinant of n X n matrix with M(i,j) = 2/(i(i+1)) if i=j otherwise 1. - Alexander Adamchuk, May 19 2006

Numerator of n/(n+6). - Gerry Martens, Aug 06 2015

In addition to being multiplicative, this sequence is also a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n, m)) for n, m >= 1. In particular, it follows that a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 20 2019

LINKS

Harry J. Smith, Table of n, a(n) for n=1..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).

Wikipedia, Quasi-polynomial

FORMULA

G.f.: x*(1 + x + x^2 + 2*x^3 + 5*x^4 + x^5 + 5*x^6 + 2*x^7 + x^8 + x^9 + x^10)/(1 - x^6)^2.

Multiplicative with a(2^e)=2^(e-1), a(3^e)=3^(e-1), a(p^e)=p^e, p>3. - Vladeta Jovovic, Sep 09 2004

a(n) = Numerator[(-1)^(n+1)*Det[DiagonalMatrix[Table[2/(i(i+1))-1, {i,1,n-2}]]+1]], n>2. - Alexander Adamchuk, May 19 2006

a(n) divides n. a(6k) = k for integer k>0. a(p^k) = p^k for prime p>3 and integer k>0. - Alexander Adamchuk, Sep 20 2006

From R. J. Mathar, Apr 18 2011: (Start)

a(n) = A109047(n)/6.

Dirichlet g.f. zeta(s-1)*(1-1/2^s-2/3^s+2/6^s). (End)

a(n) = denominator((4*n-6)/n), n >= 2, with a(1) = 1. - Johannes W. Meijer, Dec 19 2012

a((2*n-1)*2^p) = A011782(p)*A146535(n), p >= 0. - Johannes W. Meijer, Feb 06 2013

a(n) = 2*a(n-6) - a(n-12) for n >= 12. - Robert Israel, Aug 06 2015

a(n) = gcd((n-1)*n*(n+1)/6, n). - Lechoslaw Ratajczak, Feb 16 2017

From Peter Bala, Feb 13 2019: (Start)

a(n) = n/gcd(n,n + 6) = n/gcd(n,6).

a(n) = n/b(n), where b(n) is the purely periodic sequence [1,2,3,2,1,6,...] with period 6.

a(n) is a quasi-polynomial in n: a(6*n+1) = 6*n + 1; a(6*n+2) = 3*n + 1; a(6*n+3) = 2*n + 1; a(6*n+4) = 3*n + 2; a(6*n+5) = 6*n + 5; a(6*n) = n.

a(n) = numerator(n/(n + 6)); a(n) = denominator((n + 6)/n).

(End)

MAPLE

a := proc(n): if n = 1 then 1 else denom((4*n-6)/n) fi: end: seq(a(n), n=1..77); # Johannes W. Meijer, Dec 19 2012

MATHEMATICA

Numerator[Table[(-1)^(n+1) Det[ DiagonalMatrix[ Table[ 2/(i(i+1)) - 1, {i, 1, n-2} ] ] + 1 ], {n, 30} ]] (* Alexander Adamchuk, May 19 2006 *)

Table[Numerator[(n+3)/(n+2)/(n+1)/n], {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Nov 17 2009 *)

Table[n/(GCD[n, 2] GCD[n, 3]), {n, 100}] (* Wesley Ivan Hurt, Aug 06 2015 *)

LinearRecurrence[{0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 11, 2}, 80] (* Vincenzo Librandi, Aug 07 2015 *)

PROG

(Sage) [lcm(n, 6)/6 for n in xrange(1, 78)] # Zerinvary Lajos, Jun 07 2009

(PARI) { for (n=1, 1000, write("b060789.txt", n, " ", n / (gcd(n, 2) * gcd(n, 3))); ) } \\ Harry J. Smith, Jul 11 2009

(MAGMA) [n/(Gcd(n, 2)*Gcd(n, 3)) : n in [1..100]]; // Wesley Ivan Hurt, Aug 06 2015

(MAGMA) I:=[1, 1, 1, 2, 5, 1, 7, 4, 3, 5, 11, 2]; [n le 12 select I[n] else 2*Self(n-6)-Self(n-12): n in [1..80]]; // Vincenzo Librandi, Aug 07 2015

(GAP) List([1..80], n->n/(Gcd(n, 2)*Gcd(n, 3))); # Muniru A Asiru, Feb 20 2019

CROSSREFS

Cf. A011782, A109047, A146535, A220466.

Cf. other sequences given by the formula n/gcd(n,k) = numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).

Sequence in context: A165278 A106619 A173630 * A134570 A246169 A258067

Adjacent sequences:  A060786 A060787 A060788 * A060790 A060791 A060792

KEYWORD

nonn,easy,mult

AUTHOR

Len Smiley, Apr 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:25 EDT 2019. Contains 323514 sequences. (Running on oeis4.)