OFFSET
1,2
LINKS
FORMULA
Equals (BesselI(0,2) + BesselJ(0,2))/2.
Continued fraction: 1 + 1/(4 - 4/(145 - 144/(901 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n - 1))^2. - Peter Bala, Feb 22 2024
EXAMPLE
1/0!^2 + 1/2!^2 + 1/4!^2 + 1/6!^2 + ... = 1.25173804073865146774451594773...
MATHEMATICA
RealDigits[(BesselI[0, 2] + BesselJ[0, 2])/2, 10, 110] [[1]]
PROG
(PARI) suminf(k=0, 1/((2*k)!)^2) \\ Michel Marcus, Apr 26 2020
(PARI) (besseli(0, 2) + besselj(0, 2))/2 \\ Michel Marcus, Apr 26 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Ilya Gutkovskiy, Apr 25 2020
STATUS
approved