The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070910 Decimal expansion of BesselI(0,2). 38
 2, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..105. Michael Penn, An exponential trigonometric integral., YouTube video, 2020. Eric Weisstein's World of Mathematics, Factorial Sums. Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind. FORMULA Equals Sum_{k>=0} 1/k!^2. From Peter Bala, Aug 19 2013: (Start) Continued fraction expansion: 1/(1 - 1/(2 - 1/(5 - 4/(10 - 9/(17 - ... - (n-1)^2/(n^2+1 - ...)))))). See A006040. Cf. A096789. This continued fraction is the particular case k = 0 of the result BesselI(k,2) = Sum_{n = 0..infinity} 1/(n!*(n+k)!) = 1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See the remarks in A099597 for a sketch of the proof. (End) From Amiram Eldar, May 29 2021: (Start) Equals (1/e^2) * Sum_{k>=0} binomial(2*k,k)/k! = e^2 * Sum_{k>=0} (-1)^k*binomial(2*k,k)/k!. Equal (1/(2*Pi)) * Integral_{x=0..2*Pi} exp(2*sin(x)) dx. (End) Equals BesselJ(0,2*i). - Jianing Song, Sep 18 2021 EXAMPLE 2.279585302336... MATHEMATICA RealDigits[ BesselI[0, 2], 10, 110] [[1]] (* Robert G. Wilson v, Jul 09 2004 *) (* Or *) RealDigits[ Sum[ 1/(n!n!), {n, 0, Infinity}], 10, 110][[1]] PROG (PARI) besseli(0, 2) \\ Charles R Greathouse IV, Feb 19 2014 CROSSREFS Cf. A096789, A070913 (continued fraction), A006040. Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2)), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2)), this sequence (I(0,2)). Sequence in context: A155063 A324666 A011022 * A189040 A267214 A107386 Adjacent sequences: A070907 A070908 A070909 * A070911 A070912 A070913 KEYWORD cons,easy,nonn AUTHOR Benoit Cloitre, May 20 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 23:49 EDT 2024. Contains 372758 sequences. (Running on oeis4.)