login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006040
a(n) = Sum_{i=0..n} (n!/(n-i)!)^2.
(Formerly M1950)
30
1, 2, 9, 82, 1313, 32826, 1181737, 57905114, 3705927297, 300180111058, 30018011105801, 3632179343801922, 523033825507476769, 88392716510763573962, 17324972436109660496553, 3898118798124673611724426, 997918412319916444601453057, 288398421160455852489819933474
OFFSET
0,2
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = n^2*a(n-1) + 1.
The following formulas will need adjusting, since I have changed the offset. - N. J. A. Sloane, Dec 17 2013
a(n+1) = Nearest integer to BesselI(0, 2)*n!*n!, n >= 1.
a(n+1) = n!^2*Sum_{k = 0..n} 1/k!^2. BesselI(0, 2*sqrt(x))/(1-x) = Sum_{n>=0} a(n+1)*x^n/n!^2. - Vladeta Jovovic, Aug 30 2002
Recurrence: a(1) = 1, a(2) = 2, a(n+1) = (n^2 + 1)*a(n) - (n - 1)^2*a(n-1), n >= 2. The sequence defined by b(n) := (n-1)!^2 satisfies the same recurrence with the initial conditions b(1) = 1, b(2) = 1. It follows that a(n+1) = n!^2*(1 + 1/(1 - 1/(5 - 4/(10 - ... - (n - 1)^2/(n^2 + 1))))). Hence BesselI(0,2) := Sum_{k >= 0} 1/k!^2 = 1 + 1/(1 - 1/(5 - 4/(10 - ... - (n - 1)^2/(n^2 + 1 - ...)))). Cf. A073701. - Peter Bala, Jul 09 2008
MAPLE
a[0]:= 1:
for n from 1 to 30 do a[n]:= n^2*a[n-1] + 1 od:
seq(a[i], i=0..30); # Robert Israel, Dec 15 2014
MATHEMATICA
a = 1; lst = {a}; Do[a = a * n^2 + 1; AppendTo[lst, a], {n, 1, 14}]; lst (* Zerinvary Lajos, Jul 08 2009 *)
Table[Sum[(n!/(n - k)!)^2, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Aug 15 2017 *)
PROG
(PARI) a(n)=sum(k=0, n, (k!*binomial(n, k))^2 ); \\ Joerg Arndt, Dec 14 2014
(Sage)
def A006040_list(len):
L = [1]
for k in range(1, len): L.append(L[-1]*k^2+1)
return L
A006040_list(18) # Peter Luschny, Dec 15 2014
CROSSREFS
Main diagonal of array A099597.
Cf. A073701.
Sequence in context: A117581 A110567 A123570 * A067309 A087798 A113146
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by N. J. A. Sloane, Dec 17 2013
STATUS
approved